Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Strengths and limitations of stretching for least-squares problems with some dense rows

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10421595" target="_blank" >RIV/00216208:11320/21:10421595 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ozEYKO~UZF" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ozEYKO~UZF</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3412559" target="_blank" >10.1145/3412559</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Strengths and limitations of stretching for least-squares problems with some dense rows

  • Popis výsledku v původním jazyce

    We recently introduced a sparse stretching strategy for handling dense rows that can arise in large-scale linear least-squares problems and make such problems challenging to solve. Sparse stretching is designed to limit the amount of fill within the stretched normal matrix and hence within the subsequent Cholesky factorization. While preliminary results demonstrated that sparse stretching performs significantly better than standard stretching, it has a number of limitations. In this article, we discuss and illustrate these limitations and propose new strategies that are designed to overcome them. Numerical experiments on problems arising from practical applications are used to demonstrate the effectiveness of these new ideas. We consider both direct and preconditioned iterative solvers.

  • Název v anglickém jazyce

    Strengths and limitations of stretching for least-squares problems with some dense rows

  • Popis výsledku anglicky

    We recently introduced a sparse stretching strategy for handling dense rows that can arise in large-scale linear least-squares problems and make such problems challenging to solve. Sparse stretching is designed to limit the amount of fill within the stretched normal matrix and hence within the subsequent Cholesky factorization. While preliminary results demonstrated that sparse stretching performs significantly better than standard stretching, it has a number of limitations. In this article, we discuss and illustrate these limitations and propose new strategies that are designed to overcome them. Numerical experiments on problems arising from practical applications are used to demonstrate the effectiveness of these new ideas. We consider both direct and preconditioned iterative solvers.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACM Transactions on Mathematical Software

  • ISSN

    0098-3500

  • e-ISSN

  • Svazek periodika

    47

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    25

  • Strana od-do

    1-25

  • Kód UT WoS článku

    000606818900001

  • EID výsledku v databázi Scopus

    2-s2.0-85099365064