A Computational Study of Using Black-box QR Solvers for Large-scale Sparse-dense Linear Least Squares Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455899" target="_blank" >RIV/00216208:11320/22:10455899 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=WG6Hj86Itn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=WG6Hj86Itn</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3494527" target="_blank" >10.1145/3494527</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Computational Study of Using Black-box QR Solvers for Large-scale Sparse-dense Linear Least Squares Problems
Popis výsledku v původním jazyce
Large-scale overdetermined linear least squares problems arise in many practical applications. One popular solution method is based on the backward stable QR factorization of the system matrix A. This article focuses on sparse-dense least squares problems in which A is sparse except from a small number of rows that are considered dense. For large-scale problems, the direct application of a QR solver either fails because of insufficient memory or is unacceptably slow. We study several solution approaches based on using a sparse QR solver without modification, focussing on the case that the sparse part of A is rank deficient. We discuss partial matrix stretching and regularization and propose extending the augmented system formulation with iterative refinement for sparse problems to sparse-dense problems, optionally incorporating multi-precision arithmetic. In summary, our computational study shows that, before applying a black-box QR factorization, a check should be made for rows that are classified as dense and, if such rows are identified, then A should be split into sparse and dense blocks; a number of ways to use a black-box QR factorization to exploit this splitting are possible, with no single method found to be the best in all cases.
Název v anglickém jazyce
A Computational Study of Using Black-box QR Solvers for Large-scale Sparse-dense Linear Least Squares Problems
Popis výsledku anglicky
Large-scale overdetermined linear least squares problems arise in many practical applications. One popular solution method is based on the backward stable QR factorization of the system matrix A. This article focuses on sparse-dense least squares problems in which A is sparse except from a small number of rows that are considered dense. For large-scale problems, the direct application of a QR solver either fails because of insufficient memory or is unacceptably slow. We study several solution approaches based on using a sparse QR solver without modification, focussing on the case that the sparse part of A is rank deficient. We discuss partial matrix stretching and regularization and propose extending the augmented system formulation with iterative refinement for sparse problems to sparse-dense problems, optionally incorporating multi-precision arithmetic. In summary, our computational study shows that, before applying a black-box QR factorization, a check should be made for rows that are classified as dense and, if such rows are identified, then A should be split into sparse and dense blocks; a number of ways to use a black-box QR factorization to exploit this splitting are possible, with no single method found to be the best in all cases.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Mathematical Software
ISSN
0098-3500
e-ISSN
1557-7295
Svazek periodika
48
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
5
Kód UT WoS článku
000759468700010
EID výsledku v databázi Scopus
2-s2.0-85125196454