A Schur complement approach to preconditioning sparse linear least-squares problems with some dense rows
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386785" target="_blank" >RIV/00216208:11320/18:10386785 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11075-018-0478-2" target="_blank" >https://doi.org/10.1007/s11075-018-0478-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-018-0478-2" target="_blank" >10.1007/s11075-018-0478-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Schur complement approach to preconditioning sparse linear least-squares problems with some dense rows
Popis výsledku v původním jazyce
The effectiveness of sparse matrix techniques for directly solving large-scale linear least-squares problems is severely limited if the system matrix A has one or more nearly dense rows. In this paper, we partition the rows of A into sparse rows and dense rows (A(s) and A(d)) and apply the Schur complement approach. A potential difficulty is that the reduced normal matrix A(s)(T) A(s) is often rank-deficient, even if A is of full rank. To overcome this, we propose explicitly removing null columns of A(s) and then employing a regularization parameter and using the resulting Cholesky factors as a preconditioner for an iterative solver applied to the symmetric indefinite reduced augmented system. We consider complete factorizations as well as incomplete Cholesky factorizations of the shifted reduced normal matrix. Numerical experiments are performed on a range of large least-squares problems arising from practical applications. These demonstrate the effectiveness of the proposed approach when combined with either a sparse parallel direct solver or a robust incomplete Cholesky factorization algorithm.
Název v anglickém jazyce
A Schur complement approach to preconditioning sparse linear least-squares problems with some dense rows
Popis výsledku anglicky
The effectiveness of sparse matrix techniques for directly solving large-scale linear least-squares problems is severely limited if the system matrix A has one or more nearly dense rows. In this paper, we partition the rows of A into sparse rows and dense rows (A(s) and A(d)) and apply the Schur complement approach. A potential difficulty is that the reduced normal matrix A(s)(T) A(s) is often rank-deficient, even if A is of full rank. To overcome this, we propose explicitly removing null columns of A(s) and then employing a regularization parameter and using the resulting Cholesky factors as a preconditioner for an iterative solver applied to the symmetric indefinite reduced augmented system. We consider complete factorizations as well as incomplete Cholesky factorizations of the shifted reduced normal matrix. Numerical experiments are performed on a range of large least-squares problems arising from practical applications. These demonstrate the effectiveness of the proposed approach when combined with either a sparse parallel direct solver or a robust incomplete Cholesky factorization algorithm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC17-04150J" target="_blank" >GC17-04150J: Robustní dvojúrovňové simulace založené na Fourierově metodě a metodě konečných prvků: Odhady chyb, redukované modely a stochastika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
—
Svazek periodika
79
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
1147-1168
Kód UT WoS článku
000450947500008
EID výsledku v databázi Scopus
2-s2.0-85041206179