SOLVING MIXED SPARSE-DENSE LINEAR LEAST-SQUARES PROBLEMS BY PRECONDITIONED ITERATIVE METHODS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369987" target="_blank" >RIV/00216208:11320/17:10369987 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1137/16M1108339" target="_blank" >http://dx.doi.org/10.1137/16M1108339</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/16M1108339" target="_blank" >10.1137/16M1108339</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SOLVING MIXED SPARSE-DENSE LINEAR LEAST-SQUARES PROBLEMS BY PRECONDITIONED ITERATIVE METHODS
Popis výsledku v původním jazyce
The efficient solution of large linear least-squares problems in which the system matrix A contains rows with very different densities is challenging. Previous work has focused on direct methods for problems in which A has a few relatively dense rows. These rows are initially ignored, a factorization of the sparse part is computed using a sparse direct solver, and then the solution is updated to take account of the omitted dense rows. In some practical applications the number of dense rows can be significant, and for very large problems, using a direct solver may not be feasible. We propose processing rows that are identified as dense separately within a conjugate gradient method using an incomplete factorization preconditioner combined with the factorization of a dense matrix of size equal to the number of dense rows. Numerical experiments on large-scale problems from real applications are used to illustrate the effectiveness of our approach. The results demonstrate that we can efficiently solve problems that could not be solved by a preconditioned conjugate gradient method without exploiting the dense rows.
Název v anglickém jazyce
SOLVING MIXED SPARSE-DENSE LINEAR LEAST-SQUARES PROBLEMS BY PRECONDITIONED ITERATIVE METHODS
Popis výsledku anglicky
The efficient solution of large linear least-squares problems in which the system matrix A contains rows with very different densities is challenging. Previous work has focused on direct methods for problems in which A has a few relatively dense rows. These rows are initially ignored, a factorization of the sparse part is computed using a sparse direct solver, and then the solution is updated to take account of the omitted dense rows. In some practical applications the number of dense rows can be significant, and for very large problems, using a direct solver may not be feasible. We propose processing rows that are identified as dense separately within a conjugate gradient method using an incomplete factorization preconditioner combined with the factorization of a dense matrix of size equal to the number of dense rows. Numerical experiments on large-scale problems from real applications are used to illustrate the effectiveness of our approach. The results demonstrate that we can efficiently solve problems that could not be solved by a preconditioned conjugate gradient method without exploiting the dense rows.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC17-04150J" target="_blank" >GC17-04150J: Robustní dvojúrovňové simulace založené na Fourierově metodě a metodě konečných prvků: Odhady chyb, redukované modely a stochastika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal of Scientific Computing
ISSN
1064-8275
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
"A2422"-"A2437"
Kód UT WoS článku
000418659900013
EID výsledku v databázi Scopus
2-s2.0-85039997560