Optimal bounds for the colorful fractional Helly theorem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10430555" target="_blank" >RIV/00216208:11320/21:10430555 - isvavai.cz</a>
Výsledek na webu
<a href="https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=13818" target="_blank" >https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=13818</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.19" target="_blank" >10.4230/LIPIcs.SoCG.2021.19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal bounds for the colorful fractional Helly theorem
Popis výsledku v původním jazyce
The well known fractional Helly theorem and colorful Helly theorem can be merged into the so called colorful fractional Helly theorem. It states: for every α ELEMENT OF (0, 1] and every non-negative integer d, there is β_{col} = β_{col}(α, d) ELEMENT OF (0, 1] with the following property. Let ℱ1, ... , ℱ_{d+1} be finite nonempty families of convex sets in ℝ^d of sizes n1, ... , n_{d+1}, respectively. If at least α n1 n1 MIDLINE HORIZONTAL ELLIPSIS n_{d+1} of the colorful (d+1)-tuples have a nonempty intersection, then there is i ELEMENT OF [d+1] such that ℱ_i contains a subfamily of size at least β_{col} n_i with a nonempty intersection. (A colorful (d+1)-tuple is a (d+1)-tuple (F1, ... , F_{d+1}) such that F_i belongs to ℱ_i for every i.) The colorful fractional Helly theorem was first stated and proved by Bárány, Fodor, Montejano, Oliveros, and Pór in 2014 with β_{col} = α/(d+1). In 2017 Kim proved the theorem with better function β_{col}, which in particular tends to 1 when α tends to 1. Kim also conjectured what is the optimal bound for β_{col}(α, d) and provided the upper bound example for the optimal bound. The conjectured bound coincides with the optimal bounds for the (non-colorful) fractional Helly theorem proved independently by Eckhoff and Kalai around 1984. We verify Kim's conjecture by extending Kalai's approach to the colorful scenario. Moreover, we obtain optimal bounds also in a more general setting when we allow several sets of the same color.
Název v anglickém jazyce
Optimal bounds for the colorful fractional Helly theorem
Popis výsledku anglicky
The well known fractional Helly theorem and colorful Helly theorem can be merged into the so called colorful fractional Helly theorem. It states: for every α ELEMENT OF (0, 1] and every non-negative integer d, there is β_{col} = β_{col}(α, d) ELEMENT OF (0, 1] with the following property. Let ℱ1, ... , ℱ_{d+1} be finite nonempty families of convex sets in ℝ^d of sizes n1, ... , n_{d+1}, respectively. If at least α n1 n1 MIDLINE HORIZONTAL ELLIPSIS n_{d+1} of the colorful (d+1)-tuples have a nonempty intersection, then there is i ELEMENT OF [d+1] such that ℱ_i contains a subfamily of size at least β_{col} n_i with a nonempty intersection. (A colorful (d+1)-tuple is a (d+1)-tuple (F1, ... , F_{d+1}) such that F_i belongs to ℱ_i for every i.) The colorful fractional Helly theorem was first stated and proved by Bárány, Fodor, Montejano, Oliveros, and Pór in 2014 with β_{col} = α/(d+1). In 2017 Kim proved the theorem with better function β_{col}, which in particular tends to 1 when α tends to 1. Kim also conjectured what is the optimal bound for β_{col}(α, d) and provided the upper bound example for the optimal bound. The conjectured bound coincides with the optimal bounds for the (non-colorful) fractional Helly theorem proved independently by Eckhoff and Kalai around 1984. We verify Kim's conjecture by extending Kalai's approach to the colorful scenario. Moreover, we obtain optimal bounds also in a more general setting when we allow several sets of the same color.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 37th International Symposium on Computational Geometry (SoCG 2021)
ISBN
978-3-95977-184-9
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
14
Strana od-do
1-14
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
online
Datum konání akce
7. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—