Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimal bounds for the colorful fractional Helly theorem

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10430555" target="_blank" >RIV/00216208:11320/21:10430555 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=13818" target="_blank" >https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=13818</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2021.19" target="_blank" >10.4230/LIPIcs.SoCG.2021.19</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimal bounds for the colorful fractional Helly theorem

  • Popis výsledku v původním jazyce

    The well known fractional Helly theorem and colorful Helly theorem can be merged into the so called colorful fractional Helly theorem. It states: for every α ELEMENT OF (0, 1] and every non-negative integer d, there is β_{col} = β_{col}(α, d) ELEMENT OF (0, 1] with the following property. Let ℱ1, ... , ℱ_{d+1} be finite nonempty families of convex sets in ℝ^d of sizes n1, ... , n_{d+1}, respectively. If at least α n1 n1 MIDLINE HORIZONTAL ELLIPSIS n_{d+1} of the colorful (d+1)-tuples have a nonempty intersection, then there is i ELEMENT OF [d+1] such that ℱ_i contains a subfamily of size at least β_{col} n_i with a nonempty intersection. (A colorful (d+1)-tuple is a (d+1)-tuple (F1, ... , F_{d+1}) such that F_i belongs to ℱ_i for every i.) The colorful fractional Helly theorem was first stated and proved by Bárány, Fodor, Montejano, Oliveros, and Pór in 2014 with β_{col} = α/(d+1). In 2017 Kim proved the theorem with better function β_{col}, which in particular tends to 1 when α tends to 1. Kim also conjectured what is the optimal bound for β_{col}(α, d) and provided the upper bound example for the optimal bound. The conjectured bound coincides with the optimal bounds for the (non-colorful) fractional Helly theorem proved independently by Eckhoff and Kalai around 1984. We verify Kim&apos;s conjecture by extending Kalai&apos;s approach to the colorful scenario. Moreover, we obtain optimal bounds also in a more general setting when we allow several sets of the same color.

  • Název v anglickém jazyce

    Optimal bounds for the colorful fractional Helly theorem

  • Popis výsledku anglicky

    The well known fractional Helly theorem and colorful Helly theorem can be merged into the so called colorful fractional Helly theorem. It states: for every α ELEMENT OF (0, 1] and every non-negative integer d, there is β_{col} = β_{col}(α, d) ELEMENT OF (0, 1] with the following property. Let ℱ1, ... , ℱ_{d+1} be finite nonempty families of convex sets in ℝ^d of sizes n1, ... , n_{d+1}, respectively. If at least α n1 n1 MIDLINE HORIZONTAL ELLIPSIS n_{d+1} of the colorful (d+1)-tuples have a nonempty intersection, then there is i ELEMENT OF [d+1] such that ℱ_i contains a subfamily of size at least β_{col} n_i with a nonempty intersection. (A colorful (d+1)-tuple is a (d+1)-tuple (F1, ... , F_{d+1}) such that F_i belongs to ℱ_i for every i.) The colorful fractional Helly theorem was first stated and proved by Bárány, Fodor, Montejano, Oliveros, and Pór in 2014 with β_{col} = α/(d+1). In 2017 Kim proved the theorem with better function β_{col}, which in particular tends to 1 when α tends to 1. Kim also conjectured what is the optimal bound for β_{col}(α, d) and provided the upper bound example for the optimal bound. The conjectured bound coincides with the optimal bounds for the (non-colorful) fractional Helly theorem proved independently by Eckhoff and Kalai around 1984. We verify Kim&apos;s conjecture by extending Kalai&apos;s approach to the colorful scenario. Moreover, we obtain optimal bounds also in a more general setting when we allow several sets of the same color.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 37th International Symposium on Computational Geometry (SoCG 2021)

  • ISBN

    978-3-95977-184-9

  • ISSN

    1868-8969

  • e-ISSN

  • Počet stran výsledku

    14

  • Strana od-do

    1-14

  • Název nakladatele

    Schloss Dagstuhl--Leibniz-Zentrum für Informatik

  • Místo vydání

    Dagstuhl, Germany

  • Místo konání akce

    online

  • Datum konání akce

    7. 6. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku