Bounding Radon number via Betti numbers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422349" target="_blank" >RIV/00216208:11320/20:10422349 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.SoCG.2020.61" target="_blank" >https://doi.org/10.4230/LIPIcs.SoCG.2020.61</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2020.61" target="_blank" >10.4230/LIPIcs.SoCG.2020.61</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bounding Radon number via Betti numbers
Popis výsledku v původním jazyce
We prove general topological Radon-type theorems for sets in ℝ^d, smooth real manifolds or finite dimensional simplicial complexes. Combined with a recent result of Holmsen and Lee, it gives fractional Helly theorem, and consequently the existence of weak ε-nets as well as a (p,q)-theorem. More precisely: Let X be either ℝ^d, smooth real d-manifold, or a finite d-dimensional simplicial complex. Then if F is a finite, intersection-closed family of sets in X such that the ith reduced Betti number (with ℤ1 coefficients) of any set in F is at most b for every non-negative integer i less or equal to k, then the Radon number of F is bounded in terms of b and X. Here k is the smallest integer larger or equal to d/2 - 1 if X = ℝ^d; k=d-1 if X is a smooth real d-manifold and not a surface, k=0 if X is a surface and k=d if X is a d-dimensional simplicial complex. Using the recent result of the author and Kalai, we manage to prove the following optimal bound on fractional Helly number for families of open sets in a surface: Let F be a finite family of open sets in a surface S such that the intersection of any subfamily of F is either empty, or path-connected. Then the fractional Helly number of F is at most three. This also settles a conjecture of Holmsen, Kim, and Lee about an existence of a (p,q)-theorem for open subsets of a surface.
Název v anglickém jazyce
Bounding Radon number via Betti numbers
Popis výsledku anglicky
We prove general topological Radon-type theorems for sets in ℝ^d, smooth real manifolds or finite dimensional simplicial complexes. Combined with a recent result of Holmsen and Lee, it gives fractional Helly theorem, and consequently the existence of weak ε-nets as well as a (p,q)-theorem. More precisely: Let X be either ℝ^d, smooth real d-manifold, or a finite d-dimensional simplicial complex. Then if F is a finite, intersection-closed family of sets in X such that the ith reduced Betti number (with ℤ1 coefficients) of any set in F is at most b for every non-negative integer i less or equal to k, then the Radon number of F is bounded in terms of b and X. Here k is the smallest integer larger or equal to d/2 - 1 if X = ℝ^d; k=d-1 if X is a smooth real d-manifold and not a surface, k=0 if X is a surface and k=d if X is a d-dimensional simplicial complex. Using the recent result of the author and Kalai, we manage to prove the following optimal bound on fractional Helly number for families of open sets in a surface: Let F be a finite family of open sets in a surface S such that the intersection of any subfamily of F is either empty, or path-connected. Then the fractional Helly number of F is at most three. This also settles a conjecture of Holmsen, Kim, and Lee about an existence of a (p,q)-theorem for open subsets of a surface.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_050%2F0008466" target="_blank" >EF17_050/0008466: Zlepšení internacionalizace v oblasti výzkumu a vývoje na Univerzitě Karlově, prostřednictvím podpory kvalitních projektů MSCA-IF</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 36th International Symposium on Computational Geometry (SoCG 2020)
ISBN
978-3-95977-143-6
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
13
Strana od-do
1-13
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Curych (online)
Datum konání akce
22. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—