On packet scheduling with adversarial jamming and speedup
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10431448" target="_blank" >RIV/00216208:11320/21:10431448 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0FxfoQWzBf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0FxfoQWzBf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10479-019-03153-x" target="_blank" >10.1007/s10479-019-03153-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On packet scheduling with adversarial jamming and speedup
Popis výsledku v původním jazyce
In Packet Scheduling with Adversarial Jamming, packets of arbitrary sizes arrive over time to be transmitted over a channel in which instantaneous jamming errors occur at times chosen by the adversary and not known to the algorithm. The transmission taking place at the time of jamming is corrupt, and the algorithm learns this fact immediately. An online algorithm maximizes the total size of packets it successfully transmits and the goal is to develop an algorithm with the lowest possible asymptotic competitive ratio, where the additive constant may depend on packet sizes. Our main contribution is a universal algorithm that works for any speedup and packet sizes and, unlike previous algorithms for the problem, it does not need to know these parameters in advance. We show that this algorithm guarantees 1-competitiveness with speedup 4, making it the first known algorithm to maintain 1-competitiveness with a moderate speedup in the general setting of arbitrary packet sizes. We also prove a lower bound of phi+1 approximate to 2.618on the speedup of any 1-competitive deterministic algorithm, showing that our algorithm is close to the optimum. Additionally, we formulate a general framework for analyzing our algorithm locally and use it to show upper bounds on its competitive ratio for speedups in [1, 4) and for several special cases, recovering some previously known results, each of which had a dedicated proof. In particular, our algorithm is 3-competitive without speedup, matching both the (worst-case) performance of the algorithm by Jurdzinski et al. (Proceedings of the 12th workshop on approximation and online algorithms (WAOA), LNCS 8952, pp 193-206, 2015. ) and the lower bound by Anta et al. (J Sched 19(2):135-152, 2016. ).
Název v anglickém jazyce
On packet scheduling with adversarial jamming and speedup
Popis výsledku anglicky
In Packet Scheduling with Adversarial Jamming, packets of arbitrary sizes arrive over time to be transmitted over a channel in which instantaneous jamming errors occur at times chosen by the adversary and not known to the algorithm. The transmission taking place at the time of jamming is corrupt, and the algorithm learns this fact immediately. An online algorithm maximizes the total size of packets it successfully transmits and the goal is to develop an algorithm with the lowest possible asymptotic competitive ratio, where the additive constant may depend on packet sizes. Our main contribution is a universal algorithm that works for any speedup and packet sizes and, unlike previous algorithms for the problem, it does not need to know these parameters in advance. We show that this algorithm guarantees 1-competitiveness with speedup 4, making it the first known algorithm to maintain 1-competitiveness with a moderate speedup in the general setting of arbitrary packet sizes. We also prove a lower bound of phi+1 approximate to 2.618on the speedup of any 1-competitive deterministic algorithm, showing that our algorithm is close to the optimum. Additionally, we formulate a general framework for analyzing our algorithm locally and use it to show upper bounds on its competitive ratio for speedups in [1, 4) and for several special cases, recovering some previously known results, each of which had a dedicated proof. In particular, our algorithm is 3-competitive without speedup, matching both the (worst-case) performance of the algorithm by Jurdzinski et al. (Proceedings of the 12th workshop on approximation and online algorithms (WAOA), LNCS 8952, pp 193-206, 2015. ) and the lower bound by Anta et al. (J Sched 19(2):135-152, 2016. ).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-09142S" target="_blank" >GA17-09142S: Moderní algoritmy: Nové výzvy komplexních dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Operations Research
ISSN
0254-5330
e-ISSN
—
Svazek periodika
298
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
36
Strana od-do
7-42
Kód UT WoS článku
000617553900002
EID výsledku v databázi Scopus
2-s2.0-85061199732