Griddings of Permutations and Hardness of Pattern Matching
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10431882" target="_blank" >RIV/00216208:11320/21:10431882 - isvavai.cz</a>
Výsledek na webu
<a href="https://drops.dagstuhl.de/opus/volltexte/2021/14505/" target="_blank" >https://drops.dagstuhl.de/opus/volltexte/2021/14505/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2021.65" target="_blank" >10.4230/LIPIcs.MFCS.2021.65</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Griddings of Permutations and Hardness of Pattern Matching
Popis výsledku v původním jazyce
We study the complexity of the decision problem known as Permutation Pattern Matching, or PPM. The input of PPM consists of a pair of permutations τ (the "text") and π (the "pattern"), and the goal is to decide whether τ contains π as a subpermutation. On general inputs, PPM is known to be NP-complete by a result of Bose, Buss and Lubiw. In this paper, we focus on restricted instances of PPM where the text is assumed to avoid a fixed (small) pattern σ; this restriction is known as Av(σ)-PPM. It has been previously shown that Av(σ)-PPM is polynomial for any σ of size at most 3, while it is NP-hard for any σ containing a monotone subsequence of length four. In this paper, we present a new hardness reduction which allows us to show, in a uniform way, that Av(σ)-PPM is hard for every σ of size at least 6, for every σ of size 5 except the symmetry class of 41352, as well as for every σ symmetric to one of the three permutations 4321, 4312 and 4231. Moreover, assuming the exponential time hypothesis, none of these hard cases of Av(σ)-PPM can be solved in time 2^o(n/log n). Previously, such conditional lower bound was not known even for the unconstrained PPM problem. On the tractability side, we combine the CSP approach of Guillemot and Marx with the structural results of Huczynska and Vatter to show that for any monotone-griddable permutation class ????, PPM is polynomial when the text is restricted to a permutation from ????.
Název v anglickém jazyce
Griddings of Permutations and Hardness of Pattern Matching
Popis výsledku anglicky
We study the complexity of the decision problem known as Permutation Pattern Matching, or PPM. The input of PPM consists of a pair of permutations τ (the "text") and π (the "pattern"), and the goal is to decide whether τ contains π as a subpermutation. On general inputs, PPM is known to be NP-complete by a result of Bose, Buss and Lubiw. In this paper, we focus on restricted instances of PPM where the text is assumed to avoid a fixed (small) pattern σ; this restriction is known as Av(σ)-PPM. It has been previously shown that Av(σ)-PPM is polynomial for any σ of size at most 3, while it is NP-hard for any σ containing a monotone subsequence of length four. In this paper, we present a new hardness reduction which allows us to show, in a uniform way, that Av(σ)-PPM is hard for every σ of size at least 6, for every σ of size 5 except the symmetry class of 41352, as well as for every σ symmetric to one of the three permutations 4321, 4312 and 4231. Moreover, assuming the exponential time hypothesis, none of these hard cases of Av(σ)-PPM can be solved in time 2^o(n/log n). Previously, such conditional lower bound was not known even for the unconstrained PPM problem. On the tractability side, we combine the CSP approach of Guillemot and Marx with the structural results of Huczynska and Vatter to show that for any monotone-griddable permutation class ????, PPM is polynomial when the text is restricted to a permutation from ????.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-19158S" target="_blank" >GA18-19158S: Algoritmické, strukturální a složitostní aspekty geometrických a dalších konfigurací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)
ISBN
978-3-95977-201-3
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
22
Strana od-do
1-22
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Tallinn, Estonsko
Datum konání akce
23. 8. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—