Similarity vs. Relevance: From Simple Searches to Complex Discovery
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10433259" target="_blank" >RIV/00216208:11320/21:10433259 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/21:00351284
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-89657-7_9" target="_blank" >http://dx.doi.org/10.1007/978-3-030-89657-7_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-89657-7_9" target="_blank" >10.1007/978-3-030-89657-7_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Similarity vs. Relevance: From Simple Searches to Complex Discovery
Popis výsledku v původním jazyce
Similarity queries play the crucial role in content-based retrieval. The similarity function itself is regarded as the function of relevance between a query object and objects from database; the most similar objects are understood as the most relevant. However, such an automatic adoption of similarity as relevance leads to limited applicability of similarity search in domains like entity discovery, where relevant objects are not supposed to be similar in the traditional meaning. In this paper, we propose the meta-model of data-transitive similarity operating on top of a particular similarity model and a database. This meta-model enables to treat directly non-similar objects x , y as similar if there exists a chain of objects x , i1 , ..., in , y having the neighboring members similar enough. Hence, this approach places the similarity in the role of relevance, where objects do not need to be directly similar but still remain relevant to each other (transitively similar). The data-transitive similarity concept allows to use standard similarity-search methods (queries, joins, rankings, analytics) in more complex tasks, like the entity discovery, where relevant results are often complementary or orthogonal to the query, rather than directly similar. Moreover, we show the data-transitive similarity is inherently self-explainable and non-metric. We discuss the approach in the domain of open dataset discovery.
Název v anglickém jazyce
Similarity vs. Relevance: From Simple Searches to Complex Discovery
Popis výsledku anglicky
Similarity queries play the crucial role in content-based retrieval. The similarity function itself is regarded as the function of relevance between a query object and objects from database; the most similar objects are understood as the most relevant. However, such an automatic adoption of similarity as relevance leads to limited applicability of similarity search in domains like entity discovery, where relevant objects are not supposed to be similar in the traditional meaning. In this paper, we propose the meta-model of data-transitive similarity operating on top of a particular similarity model and a database. This meta-model enables to treat directly non-similar objects x , y as similar if there exists a chain of objects x , i1 , ..., in , y having the neighboring members similar enough. Hence, this approach places the similarity in the role of relevance, where objects do not need to be directly similar but still remain relevant to each other (transitively similar). The data-transitive similarity concept allows to use standard similarity-search methods (queries, joins, rankings, analytics) in more complex tasks, like the entity discovery, where relevant results are often complementary or orthogonal to the query, rather than directly similar. Moreover, we show the data-transitive similarity is inherently self-explainable and non-metric. We discuss the approach in the domain of open dataset discovery.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01641S" target="_blank" >GA19-01641S: Kontextové podobnostní vyhledávání v otevřených datech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
14th International Conference, SISAP 2021, Dortmund, Germany, September 29 – October 1, 2021, Proceedings
ISBN
978-3-030-89656-0
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
104-117
Název nakladatele
Springer
Místo vydání
Cham, Germany
Místo konání akce
virtual
Datum konání akce
29. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—