Binary Sketches for Secondary Filtering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107167" target="_blank" >RIV/00216224:14330/19:00107167 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3231936" target="_blank" >http://dx.doi.org/10.1145/3231936</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3231936" target="_blank" >10.1145/3231936</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Binary Sketches for Secondary Filtering
Popis výsledku v původním jazyce
This paper addresses the problem of matching the most similar data objects to a given query object. We adopt a generic model of similarity that involves the domain of objects and metric distance functions only. We examine the case of a large dataset in a complex data space which makes this problem inherently difficult. Many indexing and searching approaches have been proposed but they have often failed to efficiently prune complex search spaces and access large portions of the dataset when evaluating queries. We propose an approach to enhancing the existing search techniques so as to significantly reduce the number of accessed data objects while preserving the quality of the search results. In particular, we extend each data object with its sketch, a short binary string in Hamming space. These sketches approximate the similarity relationships in the original search space, and we use them to filter out non-relevant objects not pruned by the original search technique. We provide a probabilistic model to tune the parameters of the sketch-based filtering separately for each query object. Experiments conducted with different similarity search techniques and real-life datasets demonstrate that the secondary filtering can speed-up similarity search several times.
Název v anglickém jazyce
Binary Sketches for Secondary Filtering
Popis výsledku anglicky
This paper addresses the problem of matching the most similar data objects to a given query object. We adopt a generic model of similarity that involves the domain of objects and metric distance functions only. We examine the case of a large dataset in a complex data space which makes this problem inherently difficult. Many indexing and searching approaches have been proposed but they have often failed to efficiently prune complex search spaces and access large portions of the dataset when evaluating queries. We propose an approach to enhancing the existing search techniques so as to significantly reduce the number of accessed data objects while preserving the quality of the search results. In particular, we extend each data object with its sketch, a short binary string in Hamming space. These sketches approximate the similarity relationships in the original search space, and we use them to filter out non-relevant objects not pruned by the original search technique. We provide a probabilistic model to tune the parameters of the sketch-based filtering separately for each query object. Experiments conducted with different similarity search techniques and real-life datasets demonstrate that the secondary filtering can speed-up similarity search several times.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Information Systems
ISSN
1046-8188
e-ISSN
1558-2868
Svazek periodika
37
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
„1:1“-„1:28“
Kód UT WoS článku
000457519000001
EID výsledku v databázi Scopus
—