On the Similarity Search With Hamming Space Sketches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00121403" target="_blank" >RIV/00216224:14330/21:00121403 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4018/978-1-7998-4963-6.ch005" target="_blank" >http://dx.doi.org/10.4018/978-1-7998-4963-6.ch005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-7998-4963-6.ch005" target="_blank" >10.4018/978-1-7998-4963-6.ch005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Similarity Search With Hamming Space Sketches
Popis výsledku v původním jazyce
This chapter focuses on data searching, which is nowadays mostly based on similarity. The similarity search is challenging due to its computational complexity, and also the fact that similarity is subjective and context dependent. The authors assume the metric space model of similarity, defined by the domain of objects and the metric function that measures the dissimilarity of object pairs. The volume of contemporary data is large, and the time efficiency of similarity query executions is essential. This chapter investigates transformations of metric space to Hamming space to decrease the memory and computational complexity of the search. Various challenges of the similarity search with sketches in the Hamming space are addressed, including the definition of sketching transformation and efficient search algorithms that exploit sketches to speed-up searching. The indexing of Hamming space and a heuristic to facilitate the selection of a suitable sketching technique for any given application are also considered.
Název v anglickém jazyce
On the Similarity Search With Hamming Space Sketches
Popis výsledku anglicky
This chapter focuses on data searching, which is nowadays mostly based on similarity. The similarity search is challenging due to its computational complexity, and also the fact that similarity is subjective and context dependent. The authors assume the metric space model of similarity, defined by the domain of objects and the metric function that measures the dissimilarity of object pairs. The volume of contemporary data is large, and the time efficiency of similarity query executions is essential. This chapter investigates transformations of metric space to Hamming space to decrease the memory and computational complexity of the search. Various challenges of the similarity search with sketches in the Hamming space are addressed, including the definition of sketching transformation and efficient search algorithms that exploit sketches to speed-up searching. The indexing of Hamming space and a heuristic to facilitate the selection of a suitable sketching technique for any given application are also considered.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Intelligent Analytics With Advanced Multi-Industry Applications
ISBN
9781799849636
Počet stran výsledku
31
Strana od-do
97-127
Počet stran knihy
392
Název nakladatele
IGI Global
Místo vydání
Hershey, PA (USA)
Kód UT WoS kapitoly
—