A cautionary note on the variance of empirical pair correlation function
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10434768" target="_blank" >RIV/00216208:11320/21:10434768 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=S-1Ummou64" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=S-1Ummou64</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/sta4.406" target="_blank" >10.1002/sta4.406</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A cautionary note on the variance of empirical pair correlation function
Popis výsledku v původním jazyce
Point processes are popular models for data consisting of a random configuration of points, such as positions of trees of a given species in a forest stand, locations of earthquakes' epicentres or positions of proteins in a cell membrane. Pair correlation function is a functional summary characteristic quantifying the interactions between pairs of points of the process at different distances. In practice, kernel estimators of the pair correlation function are mostly used, which require the user to choose the bandwidth of the smoothing kernel. When looking for the optimal bandwidth, higher order terms of the variance of the estimator are often neglected. We present the detailed formulas for the variance and argue that the higher order terms contribute the most to the variance and should not be ignored. Furthermore, we adapt a well-known variance approximation formula to accommodate the popular translation edge correction factor. We compare the original and the adjusted approximation formula to the exact variance obtained by numerical integration and to the empirical variance obtained from simulated realizations. We conclude that the variance approximations do not perform well and that modern cross-validation approaches to bandwidth selection should be preferred in practice.
Název v anglickém jazyce
A cautionary note on the variance of empirical pair correlation function
Popis výsledku anglicky
Point processes are popular models for data consisting of a random configuration of points, such as positions of trees of a given species in a forest stand, locations of earthquakes' epicentres or positions of proteins in a cell membrane. Pair correlation function is a functional summary characteristic quantifying the interactions between pairs of points of the process at different distances. In practice, kernel estimators of the pair correlation function are mostly used, which require the user to choose the bandwidth of the smoothing kernel. When looking for the optimal bandwidth, higher order terms of the variance of the estimator are often neglected. We present the detailed formulas for the variance and argue that the higher order terms contribute the most to the variance and should not be ignored. Furthermore, we adapt a well-known variance approximation formula to accommodate the popular translation edge correction factor. We compare the original and the adjusted approximation formula to the exact variance obtained by numerical integration and to the empirical variance obtained from simulated realizations. We conclude that the variance approximations do not perform well and that modern cross-validation approaches to bandwidth selection should be preferred in practice.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04412S" target="_blank" >GA19-04412S: Nové přístupy k modelování a statistice náhodných množin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Stat [online]
ISSN
2049-1573
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
e406
Kód UT WoS článku
000680940600001
EID výsledku v databázi Scopus
2-s2.0-85121761640