Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Approximate computation of projection depths

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10434777" target="_blank" >RIV/00216208:11320/21:10434777 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=G_U9W1Dx3Y" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=G_U9W1Dx3Y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.csda.2020.107166" target="_blank" >10.1016/j.csda.2020.107166</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Approximate computation of projection depths

  • Popis výsledku v původním jazyce

    Data depth is a concept in multivariate statistics that measures the centrality of a point in a given data cloud in R-d. If the depth of a point can be represented as the minimum of the depths with respect to all one-dimensional projections of the data, then the depth satisfies the so-called projection property. Such depths form an important class that includes many of the depths that have been proposed in literature. For depths that satisfy the projection property an approximate algorithm can easily be constructed since taking the minimum of the depths with respect to only a finite number of one-dimensional projections yields an upper bound for the depth with respect to the multivariate data. Such an algorithm is particularly useful if no exact algorithm exists or if the exact algorithm has a high computational complexity, as is the case with the halfspace depth or the projection depth. To compute these depths in high dimensions, the use of an approximate algorithm with better complexity is surely preferable. Instead of focusing on a single method we provide a comprehensive and fair comparison of several methods, both already described in the literature and original. (C) 2021 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Approximate computation of projection depths

  • Popis výsledku anglicky

    Data depth is a concept in multivariate statistics that measures the centrality of a point in a given data cloud in R-d. If the depth of a point can be represented as the minimum of the depths with respect to all one-dimensional projections of the data, then the depth satisfies the so-called projection property. Such depths form an important class that includes many of the depths that have been proposed in literature. For depths that satisfy the projection property an approximate algorithm can easily be constructed since taking the minimum of the depths with respect to only a finite number of one-dimensional projections yields an upper bound for the depth with respect to the multivariate data. Such an algorithm is particularly useful if no exact algorithm exists or if the exact algorithm has a high computational complexity, as is the case with the halfspace depth or the projection depth. To compute these depths in high dimensions, the use of an approximate algorithm with better complexity is surely preferable. Instead of focusing on a single method we provide a comprehensive and fair comparison of several methods, both already described in the literature and original. (C) 2021 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ19-16097Y" target="_blank" >GJ19-16097Y: Geometrické aspekty matematické statistiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computational Statistics and Data Analysis

  • ISSN

    0167-9473

  • e-ISSN

  • Svazek periodika

    157

  • Číslo periodika v rámci svazku

    January

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    23

  • Strana od-do

    107166

  • Kód UT WoS článku

    000620292000003

  • EID výsledku v databázi Scopus

    2-s2.0-85099698819