Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Identifying influential observations in a Bayesian multi-level mediation model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10434857" target="_blank" >RIV/00216208:11320/21:10434857 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ewxXcoy4Ec" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ewxXcoy4Ec</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/02664763.2020.1748179" target="_blank" >10.1080/02664763.2020.1748179</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Identifying influential observations in a Bayesian multi-level mediation model

  • Popis výsledku v původním jazyce

    Increasingly complex models are being fit to data these days. This is especially the case for Bayesian modelling making use of Markov chain Monte Carlo methods. Tailored model diagnostics are usually lacking behind. This is also the case for Bayesian mediation models. In this paper, we eveloped a method for the detection of influential observations for a popular mediation model and its extensions in a Bayesian context. Detection of influential observations is based on the case-deletion principle. Importance sampling with weights which take advantage of the dependence structure in hierarchical models is utilized in order to identify the part of the model which is influenced most. We make use of the variance of log importance sampling weights as the measure of influence. It is demonstrated that this approach is useful when interest lies in the impact of individual observations in a subset of model parameters. The method is illustrated on a three-level data set from the field of nursing research, which was previously used to fit a mediation model of patient satisfaction with care. We focused on influential cases on both the second and the third level of the data.

  • Název v anglickém jazyce

    Identifying influential observations in a Bayesian multi-level mediation model

  • Popis výsledku anglicky

    Increasingly complex models are being fit to data these days. This is especially the case for Bayesian modelling making use of Markov chain Monte Carlo methods. Tailored model diagnostics are usually lacking behind. This is also the case for Bayesian mediation models. In this paper, we eveloped a method for the detection of influential observations for a popular mediation model and its extensions in a Bayesian context. Detection of influential observations is based on the case-deletion principle. Importance sampling with weights which take advantage of the dependence structure in hierarchical models is utilized in order to identify the part of the model which is influenced most. We make use of the variance of log importance sampling weights as the measure of influence. It is demonstrated that this approach is useful when interest lies in the impact of individual observations in a subset of model parameters. The method is illustrated on a three-level data set from the field of nursing research, which was previously used to fit a mediation model of patient satisfaction with care. We focused on influential cases on both the second and the third level of the data.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-00015S" target="_blank" >GA19-00015S: Identifikace schémat časového vývoje indikátorů chudoby a sociálního vyčlenění domácností založená na vícerozměrných panelových datech smíšeného typu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Applied Statistics

  • ISSN

    0266-4763

  • e-ISSN

  • Svazek periodika

    48

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

    943-960

  • Kód UT WoS článku

    000560591400001

  • EID výsledku v databázi Scopus

    2-s2.0-85083519508