Inference for cluster point processes with over- or under-dispersed cluster sizes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F20%3A43900922" target="_blank" >RIV/60076658:12510/20:43900922 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11222-020-09960-8?wt_mc=Internal.Event.1.SEM.ArticleAuthorAssignedToIssue" target="_blank" >https://link.springer.com/article/10.1007/s11222-020-09960-8?wt_mc=Internal.Event.1.SEM.ArticleAuthorAssignedToIssue</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11222-020-09960-8" target="_blank" >10.1007/s11222-020-09960-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inference for cluster point processes with over- or under-dispersed cluster sizes
Popis výsledku v původním jazyce
Cluster point processes comprise a class of models that have been used for a wide range of applications. While several models have been studied for the probability density function of the offspring displacements and the parent point process, there are few examples of non-Poisson distributed cluster sizes. In this paper, we introduce a generalization of the Thomas process, which allows for the cluster sizes to have a variance that is greater or less than the expected value. We refer to this as the cluster sizes being over- and under-dispersed, respectively. To fit the model, we introduce minimum contrast methods and a Bayesian MCMC algorithm. These are evaluated in a simulation study. It is found that using the Bayesian MCMC method, we are in most cases able to detect over- and under-dispersion in the cluster sizes. We use the MCMC method to fit the model to nerve fiber data, and contrast the results to those of a fitted Thomas process
Název v anglickém jazyce
Inference for cluster point processes with over- or under-dispersed cluster sizes
Popis výsledku anglicky
Cluster point processes comprise a class of models that have been used for a wide range of applications. While several models have been studied for the probability density function of the offspring displacements and the parent point process, there are few examples of non-Poisson distributed cluster sizes. In this paper, we introduce a generalization of the Thomas process, which allows for the cluster sizes to have a variance that is greater or less than the expected value. We refer to this as the cluster sizes being over- and under-dispersed, respectively. To fit the model, we introduce minimum contrast methods and a Bayesian MCMC algorithm. These are evaluated in a simulation study. It is found that using the Bayesian MCMC method, we are in most cases able to detect over- and under-dispersion in the cluster sizes. We use the MCMC method to fit the model to nerve fiber data, and contrast the results to those of a fitted Thomas process
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04412S" target="_blank" >GA19-04412S: Nové přístupy k modelování a statistice náhodných množin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Statistics and Computing
ISSN
0960-3174
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
1573-1590
Kód UT WoS článku
000548474400001
EID výsledku v databázi Scopus
2-s2.0-85087963812