On parameter estimation for doubly inhomogeneous cluster point processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F17%3A43892131" target="_blank" >RIV/60076658:12510/17:43892131 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.spasta.2017.03.005" target="_blank" >http://dx.doi.org/10.1016/j.spasta.2017.03.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.spasta.2017.03.005" target="_blank" >10.1016/j.spasta.2017.03.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On parameter estimation for doubly inhomogeneous cluster point processes
Popis výsledku v původním jazyce
Nowadays, spatial inhomogeneity and clustering are two important features frequently observed in point patterns. These features often reveal heterogeneity of processes/factors involved in the point pattern formation and interaction determining the relative locations of points. Thus, inhomogeneous cluster point processes can be viewed as flexible and relevant models for describing point patterns observed in biology, forestry and economics for example. In this article, we consider cluster point processes with double inhomogeneity in which locations of cluster centers are drawn under an inhomogeneous parametric intensity function and the distribution of clusters is spatially inhomogeneous and depends on a given parametric function. We propose a Bayesian estimation procedure based on an MCMC algorithm to simultaneously estimate inhomogeneity parameters, cluster parameters and cluster centers. This modeling and estimation framework was applied to a toy case study dealing with the small-scale dispersal of spores of a fungal pathogen infecting plants.
Název v anglickém jazyce
On parameter estimation for doubly inhomogeneous cluster point processes
Popis výsledku anglicky
Nowadays, spatial inhomogeneity and clustering are two important features frequently observed in point patterns. These features often reveal heterogeneity of processes/factors involved in the point pattern formation and interaction determining the relative locations of points. Thus, inhomogeneous cluster point processes can be viewed as flexible and relevant models for describing point patterns observed in biology, forestry and economics for example. In this article, we consider cluster point processes with double inhomogeneity in which locations of cluster centers are drawn under an inhomogeneous parametric intensity function and the distribution of clusters is spatially inhomogeneous and depends on a given parametric function. We propose a Bayesian estimation procedure based on an MCMC algorithm to simultaneously estimate inhomogeneity parameters, cluster parameters and cluster centers. This modeling and estimation framework was applied to a toy case study dealing with the small-scale dispersal of spores of a fungal pathogen infecting plants.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-03708S" target="_blank" >GA16-03708S: Prostorová geometrická statistika náhodných množin v eukleidovských prostorech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Spatial Statistics
ISSN
2211-6753
e-ISSN
—
Svazek periodika
2017
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
191-205
Kód UT WoS článku
000405608800009
EID výsledku v databázi Scopus
—