Quick inference for log Gaussian Cox processes with non-stationary underlying random fields
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F19%3A43899299" target="_blank" >RIV/60076658:12510/19:43899299 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/19:10401361
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2211675319301393" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2211675319301393</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.spasta.2019.100388" target="_blank" >10.1016/j.spasta.2019.100388</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quick inference for log Gaussian Cox processes with non-stationary underlying random fields
Popis výsledku v původním jazyce
For point patterns observed in natura, spatial heterogeneity is more the rule than the exception. In numerous applications, this can be mathematically handled by the flexible class of log Gaussian Cox processes (LGCPs); in brief, a LGCP is a Cox process driven by an underlying log Gaussian random field (log GRF). This allows the representation of point aggregation, point vacuum and intermediate situations, with more or less rapid transitions between these different states depending on the properties of GRF. Very often, the covariance function of the GRF is assumed to be stationary. In this article, we give two examples where the sizes (that is, the number of points) and the spatial extents of point clusters are allowed to vary in space. To tackle such features, we propose parametric and semiparametric models of non-stationary LGCPs where the non-stationarity is included in both the mean function and the covariance function of the GRF. Thus, in contrast to most other work on inhomogeneous LGCPs, second-order intensity-reweighted stationarity is not satisfied and the usual two step procedure for parameter estimation based on e.g. composite likelihood does not easily apply. Instead we propose a fast three step procedure based on composite likelihood. We apply our modelling and estimation framework
Název v anglickém jazyce
Quick inference for log Gaussian Cox processes with non-stationary underlying random fields
Popis výsledku anglicky
For point patterns observed in natura, spatial heterogeneity is more the rule than the exception. In numerous applications, this can be mathematically handled by the flexible class of log Gaussian Cox processes (LGCPs); in brief, a LGCP is a Cox process driven by an underlying log Gaussian random field (log GRF). This allows the representation of point aggregation, point vacuum and intermediate situations, with more or less rapid transitions between these different states depending on the properties of GRF. Very often, the covariance function of the GRF is assumed to be stationary. In this article, we give two examples where the sizes (that is, the number of points) and the spatial extents of point clusters are allowed to vary in space. To tackle such features, we propose parametric and semiparametric models of non-stationary LGCPs where the non-stationarity is included in both the mean function and the covariance function of the GRF. Thus, in contrast to most other work on inhomogeneous LGCPs, second-order intensity-reweighted stationarity is not satisfied and the usual two step procedure for parameter estimation based on e.g. composite likelihood does not easily apply. Instead we propose a fast three step procedure based on composite likelihood. We apply our modelling and estimation framework
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04412S" target="_blank" >GA19-04412S: Nové přístupy k modelování a statistice náhodných množin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Spatial Statistics
ISSN
2211-6753
e-ISSN
—
Svazek periodika
2019
Číslo periodika v rámci svazku
33
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
000489753700003
EID výsledku v databázi Scopus
2-s2.0-85072734675