A DEPTH-BASED MODIFICATION OF THE K-NEAREST NEIGHBOUR METHOD
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435712" target="_blank" >RIV/00216208:11320/21:10435712 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/21:73610110
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tmT3TMNbOl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tmT3TMNbOl</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2021-1-0015" target="_blank" >10.14736/kyb-2021-1-0015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A DEPTH-BASED MODIFICATION OF THE K-NEAREST NEIGHBOUR METHOD
Popis výsledku v původním jazyce
We propose a new nonparametric procedure to solve the problem of classifying objects represented by d-dimensional vectors into K >= 2 groups. The newly proposed classifier was inspired by the k nearest neighbour (kNN) method. It is based on the idea of a depth-based distributional neighbourhood and is called k nearest depth neighbours (kNDN) classifier. The kNDN classifier has several desirable properties: in contrast to the classical kNN, it can utilize global properties of the considered distributions (symmetry). In contrast to the maximal depth classifier and related classifiers, it does not have problems with classification when the considered distributions differ in dispersion or have unequal priors. The kNDN classifier is compared to several depth-based classifiers as well as the classical kNN method in a simulation study. According to the average misclassification rates, it is comparable to the best current depth-based classifiers.
Název v anglickém jazyce
A DEPTH-BASED MODIFICATION OF THE K-NEAREST NEIGHBOUR METHOD
Popis výsledku anglicky
We propose a new nonparametric procedure to solve the problem of classifying objects represented by d-dimensional vectors into K >= 2 groups. The newly proposed classifier was inspired by the k nearest neighbour (kNN) method. It is based on the idea of a depth-based distributional neighbourhood and is called k nearest depth neighbours (kNDN) classifier. The kNDN classifier has several desirable properties: in contrast to the classical kNN, it can utilize global properties of the considered distributions (symmetry). In contrast to the maximal depth classifier and related classifiers, it does not have problems with classification when the considered distributions differ in dispersion or have unequal priors. The kNDN classifier is compared to several depth-based classifiers as well as the classical kNN method in a simulation study. According to the average misclassification rates, it is comparable to the best current depth-based classifiers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008408" target="_blank" >EF17_049/0008408: Hydrodynamický design čerpadel</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kybernetika
ISSN
0023-5954
e-ISSN
—
Svazek periodika
57
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
23
Strana od-do
15-37
Kód UT WoS článku
000626598800002
EID výsledku v databázi Scopus
2-s2.0-85103245198