A null-space approach for large-scale symmetric saddle point systems with a small and non zero (2, 2) block
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436703" target="_blank" >RIV/00216208:11320/21:10436703 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Z_p0rU4492" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Z_p0rU4492</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-021-01245-z" target="_blank" >10.1007/s11075-021-01245-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A null-space approach for large-scale symmetric saddle point systems with a small and non zero (2, 2) block
Popis výsledku v původním jazyce
Null-space methods have long been used to solve large sparse nxn symmetric saddle point systems of equations in which the (2, 2) block is zero. This paper focuses on the case where the (1, 1) block is ill conditioned or rank deficient and the k x k (2, 2) block is non zero and small (k n). Additionally, the (2, 1) block may be rank deficient. Such systems arise in a range of practical applications. A novel nullspace approach is proposed that transforms the system matrix into a nicer symmetric saddle point matrix of order n that has a non zero (2, 2) block of order at most 2k and, importantly, the (1, 1) block is symmetric positive definite. Success of any null-space approach depends on constructing a suitable null-space basis. We propose methods for wide matrices having far fewer rows than columns with the aim of balancing stability of the transformed saddle point matrix with preserving sparsity in the (1, 1) block. Linear least squares problems that contain a small number of dense rows are an important motivation and are used to illustrate our ideas and to explore their potential for solving large-scale systems.
Název v anglickém jazyce
A null-space approach for large-scale symmetric saddle point systems with a small and non zero (2, 2) block
Popis výsledku anglicky
Null-space methods have long been used to solve large sparse nxn symmetric saddle point systems of equations in which the (2, 2) block is zero. This paper focuses on the case where the (1, 1) block is ill conditioned or rank deficient and the k x k (2, 2) block is non zero and small (k n). Additionally, the (2, 1) block may be rank deficient. Such systems arise in a range of practical applications. A novel nullspace approach is proposed that transforms the system matrix into a nicer symmetric saddle point matrix of order n that has a non zero (2, 2) block of order at most 2k and, importantly, the (1, 1) block is symmetric positive definite. Success of any null-space approach depends on constructing a suitable null-space basis. We propose methods for wide matrices having far fewer rows than columns with the aim of balancing stability of the transformed saddle point matrix with preserving sparsity in the (1, 1) block. Linear least squares problems that contain a small number of dense rows are an important motivation and are used to illustrate our ideas and to explore their potential for solving large-scale systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
—
Svazek periodika
90
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
29
Strana od-do
1639-1667
Kód UT WoS článku
000741876100001
EID výsledku v databázi Scopus
2-s2.0-85122807545