On Ordered Ramsey Numbers of Tripartite 3-Uniform Hypergraphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436871" target="_blank" >RIV/00216208:11320/21:10436871 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-83823-2_23" target="_blank" >https://doi.org/10.1007/978-3-030-83823-2_23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-83823-2_23" target="_blank" >10.1007/978-3-030-83823-2_23</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Ordered Ramsey Numbers of Tripartite 3-Uniform Hypergraphs
Popis výsledku v původním jazyce
For an integer $k geq 2$, an emph{ordered $k$-uniform hypergraph} $mathcal{H}=(H,<)$ is a $k$-uniform hypergraph $H$ together with a fixed linear ordering $<$ of its vertex set. The emph{ordered Ramsey number} $overline{R}(mathcal{H},mathcal{G})$ of two ordered $k$-uniform hypergraphs $mathcal{H}$ and $mathcal{G}$ is the smallest $N in mathbb{N}$ such that every red-blue coloring of the hyperedges of the ordered complete $k$-uniform hypergraph $mathcal{K}^{(k)}_N$ on $N$ vertices contains a blue copy of $mathcal{H}$ or a red copy of $mathcal{G}$. The ordered Ramsey numbers are quite extensively studied for ordered graphs, but little is known about ordered hypergraphs of higher uniformity. We provide some of the first nontrivial estimates on ordered Ramsey numbers of ordered 3-uniform hypergraphs. In particular, we prove that for all $d,n in mathbb{N}$ and for every ordered $3$-uniform hypergraph $mathcal{H}$ on $n$ vertices with maximum degree $d$ and with interval chromatic number $3$ there is an $varepsilon=varepsilon(d)>0$ such that $$overline{R}(mathcal{H},mathcal{H}) leq 2^{O(n^{2-varepsilon})}.$$ In fact, we prove this upper bound for the number $overline{R}(mathcal{G},mathcal{K}^{(3)}_3(n))$, where $mathcal{G}$ is an ordered 3-uniform hypergraph with $n$ vertices and maximum degree $d$ and $mathcal{K}^{(3)}_3(n)$ is the ordered complete tripartite hypergraph with consecutive color classes of size $n$. We show that this bound is not far from the truth by proving $overline{R}(mathcal{H},mathcal{K}^{(3)}_3(n)) geq 2^{Omega(nlog{n})}$ for some fixed ordered $3$-uniform hypergraph $mathcal{H}$.
Název v anglickém jazyce
On Ordered Ramsey Numbers of Tripartite 3-Uniform Hypergraphs
Popis výsledku anglicky
For an integer $k geq 2$, an emph{ordered $k$-uniform hypergraph} $mathcal{H}=(H,<)$ is a $k$-uniform hypergraph $H$ together with a fixed linear ordering $<$ of its vertex set. The emph{ordered Ramsey number} $overline{R}(mathcal{H},mathcal{G})$ of two ordered $k$-uniform hypergraphs $mathcal{H}$ and $mathcal{G}$ is the smallest $N in mathbb{N}$ such that every red-blue coloring of the hyperedges of the ordered complete $k$-uniform hypergraph $mathcal{K}^{(k)}_N$ on $N$ vertices contains a blue copy of $mathcal{H}$ or a red copy of $mathcal{G}$. The ordered Ramsey numbers are quite extensively studied for ordered graphs, but little is known about ordered hypergraphs of higher uniformity. We provide some of the first nontrivial estimates on ordered Ramsey numbers of ordered 3-uniform hypergraphs. In particular, we prove that for all $d,n in mathbb{N}$ and for every ordered $3$-uniform hypergraph $mathcal{H}$ on $n$ vertices with maximum degree $d$ and with interval chromatic number $3$ there is an $varepsilon=varepsilon(d)>0$ such that $$overline{R}(mathcal{H},mathcal{H}) leq 2^{O(n^{2-varepsilon})}.$$ In fact, we prove this upper bound for the number $overline{R}(mathcal{G},mathcal{K}^{(3)}_3(n))$, where $mathcal{G}$ is an ordered 3-uniform hypergraph with $n$ vertices and maximum degree $d$ and $mathcal{K}^{(3)}_3(n)$ is the ordered complete tripartite hypergraph with consecutive color classes of size $n$. We show that this bound is not far from the truth by proving $overline{R}(mathcal{H},mathcal{K}^{(3)}_3(n)) geq 2^{Omega(nlog{n})}$ for some fixed ordered $3$-uniform hypergraph $mathcal{H}$.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Teorie modelů a extrémální kombinatorika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Extended Abstracts EuroComb 2021
ISBN
978-3-030-83823-2
ISSN
2297-0215
e-ISSN
2297-024X
Počet stran výsledku
6
Strana od-do
142-147
Název nakladatele
Springer International Publishing
Místo vydání
neuveden
Místo konání akce
Barcelona
Datum konání akce
6. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—