Computational Complexity of Covering Disconnected Multigraphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436901" target="_blank" >RIV/00216208:11320/21:10436901 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-86593-1_6" target="_blank" >https://doi.org/10.1007/978-3-030-86593-1_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-86593-1_6" target="_blank" >10.1007/978-3-030-86593-1_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational Complexity of Covering Disconnected Multigraphs
Popis výsledku v původním jazyce
The notion of graph covers is a discretization of covering spaces introduced and deeply studied in topology. In discrete mathematics and theoretical computer science, they have attained a lot of attention from both the structural and complexity perspectives. Nonetheless, disconnected graphs were usually omitted from the considerations with the explanation that it is sufficient to understand coverings of the connected components of the target graph by components of the source one. However, different (but equivalent) versions of the definition of covers of connected graphs generalize to nonequivalent definitions of disconnected graphs. The aim of this paper is to summarize this issue and to compare three different approaches to covers of disconnected graphs: 1) locally bijective homomorphisms, 2) globally surjective locally bijective homomorphisms (which we call surjective covers), and 3) locally bijective homomorphisms which cover every vertex the same number of times (which we call equitable covers). The standpoint of our comparison is the complexity of deciding if an input graph covers a fixed target graph. We show that both surjective and equitable covers satisfy what certainly is a natural and welcome property: covering a disconnected graph is polynomial time decidable if such it is for every connected component of the graph, and it is NP-complete if it is NP-complete for at least one of its components. Despite of this, we argue that the third variant, equitable covers, is the right one, when considering covers of colored (multi)graphs. Moreover, the complexity of surjective and equitable covers differ from the fixed parameter complexity point of view. We conclude the paper by a complete characterization of the complexity of covering 2-vertex colored multigraphs with semi-edges. We present the results in the utmost generality and strength. In accord with the current trends we consider (multi)graphs with semi-edges, and, on the other hand, we aim at proving the NP-completeness results for simple input graphs.
Název v anglickém jazyce
Computational Complexity of Covering Disconnected Multigraphs
Popis výsledku anglicky
The notion of graph covers is a discretization of covering spaces introduced and deeply studied in topology. In discrete mathematics and theoretical computer science, they have attained a lot of attention from both the structural and complexity perspectives. Nonetheless, disconnected graphs were usually omitted from the considerations with the explanation that it is sufficient to understand coverings of the connected components of the target graph by components of the source one. However, different (but equivalent) versions of the definition of covers of connected graphs generalize to nonequivalent definitions of disconnected graphs. The aim of this paper is to summarize this issue and to compare three different approaches to covers of disconnected graphs: 1) locally bijective homomorphisms, 2) globally surjective locally bijective homomorphisms (which we call surjective covers), and 3) locally bijective homomorphisms which cover every vertex the same number of times (which we call equitable covers). The standpoint of our comparison is the complexity of deciding if an input graph covers a fixed target graph. We show that both surjective and equitable covers satisfy what certainly is a natural and welcome property: covering a disconnected graph is polynomial time decidable if such it is for every connected component of the graph, and it is NP-complete if it is NP-complete for at least one of its components. Despite of this, we argue that the third variant, equitable covers, is the right one, when considering covers of colored (multi)graphs. Moreover, the complexity of surjective and equitable covers differ from the fixed parameter complexity point of view. We conclude the paper by a complete characterization of the complexity of covering 2-vertex colored multigraphs with semi-edges. We present the results in the utmost generality and strength. In accord with the current trends we consider (multi)graphs with semi-edges, and, on the other hand, we aim at proving the NP-completeness results for simple input graphs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
FUNDAMENTALS OF COMPUTATION THEORY, FCT 2021
ISBN
978-3-030-86593-1
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
15
Strana od-do
85-99
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Natl Tech Univ Athens
Datum konání akce
12. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000722594000006