Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computational Complexity of Covering Disconnected Multigraphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436901" target="_blank" >RIV/00216208:11320/21:10436901 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-030-86593-1_6" target="_blank" >https://doi.org/10.1007/978-3-030-86593-1_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-86593-1_6" target="_blank" >10.1007/978-3-030-86593-1_6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computational Complexity of Covering Disconnected Multigraphs

  • Popis výsledku v původním jazyce

    The notion of graph covers is a discretization of covering spaces introduced and deeply studied in topology. In discrete mathematics and theoretical computer science, they have attained a lot of attention from both the structural and complexity perspectives. Nonetheless, disconnected graphs were usually omitted from the considerations with the explanation that it is sufficient to understand coverings of the connected components of the target graph by components of the source one. However, different (but equivalent) versions of the definition of covers of connected graphs generalize to nonequivalent definitions of disconnected graphs. The aim of this paper is to summarize this issue and to compare three different approaches to covers of disconnected graphs: 1) locally bijective homomorphisms, 2) globally surjective locally bijective homomorphisms (which we call surjective covers), and 3) locally bijective homomorphisms which cover every vertex the same number of times (which we call equitable covers). The standpoint of our comparison is the complexity of deciding if an input graph covers a fixed target graph. We show that both surjective and equitable covers satisfy what certainly is a natural and welcome property: covering a disconnected graph is polynomial time decidable if such it is for every connected component of the graph, and it is NP-complete if it is NP-complete for at least one of its components. Despite of this, we argue that the third variant, equitable covers, is the right one, when considering covers of colored (multi)graphs. Moreover, the complexity of surjective and equitable covers differ from the fixed parameter complexity point of view. We conclude the paper by a complete characterization of the complexity of covering 2-vertex colored multigraphs with semi-edges. We present the results in the utmost generality and strength. In accord with the current trends we consider (multi)graphs with semi-edges, and, on the other hand, we aim at proving the NP-completeness results for simple input graphs.

  • Název v anglickém jazyce

    Computational Complexity of Covering Disconnected Multigraphs

  • Popis výsledku anglicky

    The notion of graph covers is a discretization of covering spaces introduced and deeply studied in topology. In discrete mathematics and theoretical computer science, they have attained a lot of attention from both the structural and complexity perspectives. Nonetheless, disconnected graphs were usually omitted from the considerations with the explanation that it is sufficient to understand coverings of the connected components of the target graph by components of the source one. However, different (but equivalent) versions of the definition of covers of connected graphs generalize to nonequivalent definitions of disconnected graphs. The aim of this paper is to summarize this issue and to compare three different approaches to covers of disconnected graphs: 1) locally bijective homomorphisms, 2) globally surjective locally bijective homomorphisms (which we call surjective covers), and 3) locally bijective homomorphisms which cover every vertex the same number of times (which we call equitable covers). The standpoint of our comparison is the complexity of deciding if an input graph covers a fixed target graph. We show that both surjective and equitable covers satisfy what certainly is a natural and welcome property: covering a disconnected graph is polynomial time decidable if such it is for every connected component of the graph, and it is NP-complete if it is NP-complete for at least one of its components. Despite of this, we argue that the third variant, equitable covers, is the right one, when considering covers of colored (multi)graphs. Moreover, the complexity of surjective and equitable covers differ from the fixed parameter complexity point of view. We conclude the paper by a complete characterization of the complexity of covering 2-vertex colored multigraphs with semi-edges. We present the results in the utmost generality and strength. In accord with the current trends we consider (multi)graphs with semi-edges, and, on the other hand, we aim at proving the NP-completeness results for simple input graphs.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    FUNDAMENTALS OF COMPUTATION THEORY, FCT 2021

  • ISBN

    978-3-030-86593-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    15

  • Strana od-do

    85-99

  • Název nakladatele

    SPRINGER INTERNATIONAL PUBLISHING AG

  • Místo vydání

    CHAM

  • Místo konání akce

    Natl Tech Univ Athens

  • Datum konání akce

    12. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000722594000006