Graph Covers: Where Topology Meets Computer Science, and Simple Means Difficult
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475554" target="_blank" >RIV/00216208:11320/23:10475554 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-27051-2_1" target="_blank" >https://doi.org/10.1007/978-3-031-27051-2_1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-27051-2_1" target="_blank" >10.1007/978-3-031-27051-2_1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph Covers: Where Topology Meets Computer Science, and Simple Means Difficult
Popis výsledku v původním jazyce
We survey old and recent results on the computational complexity of graph covers, also known as locally bijective graph homomorphisms. This notion opens doors to interesting connections. The motivation itself comes from the classical notion of covering spaces in general topology, graph covers find computer science applications as a model of local computation, and in combinatorics they are used for constructing large highly symmetric graphs.More than 30 years ago, Abello et al. [1] asked for a complete characterization of the computational complexity of deciding if an input graph covers a fixed one, and until this day only isolated results are known. We look at this question from several different angles of view - covers as locally constrained graph homomorphisms, covers of multigraphs, covers of graphs with semi-edges, or the list variant of the graph covering question. We also mention several open problems, including the Strong Dichotomy Conjecture for graph covers of Bok et al. [6], stating that for every target multigraph H, the H -Cover problem is either polynomial time solvable for arbitrary input graphs, or NP-complete for simple graphs on input. We justify this conjecture for several infinite classes of target (multi)graphs.
Název v anglickém jazyce
Graph Covers: Where Topology Meets Computer Science, and Simple Means Difficult
Popis výsledku anglicky
We survey old and recent results on the computational complexity of graph covers, also known as locally bijective graph homomorphisms. This notion opens doors to interesting connections. The motivation itself comes from the classical notion of covering spaces in general topology, graph covers find computer science applications as a model of local computation, and in combinatorics they are used for constructing large highly symmetric graphs.More than 30 years ago, Abello et al. [1] asked for a complete characterization of the computational complexity of deciding if an input graph covers a fixed one, and until this day only isolated results are known. We look at this question from several different angles of view - covers as locally constrained graph homomorphisms, covers of multigraphs, covers of graphs with semi-edges, or the list variant of the graph covering question. We also mention several open problems, including the Strong Dichotomy Conjecture for graph covers of Bok et al. [6], stating that for every target multigraph H, the H -Cover problem is either polynomial time solvable for arbitrary input graphs, or NP-complete for simple graphs on input. We justify this conjecture for several infinite classes of target (multi)graphs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-15576S" target="_blank" >GA20-15576S: Nakrývání grafů: Symetrie a složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Chun-Cheng Lin, Bertrand M. T. Lin, Giuseppe Liotta: WALCOM: Algorithms and Computation - 17th International Conference and Workshops, WALCOM 2023, Hsinchu, Taiwan, March 22-24, 2023, Proceedings.
ISBN
978-3-031-27050-5
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
9
Strana od-do
3-11
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Hsinchu
Datum konání akce
22. 3. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—