Computational Complexity of Covering Three-Vertex Multigraphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282429" target="_blank" >RIV/00216208:11320/14:10282429 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-662-44465-8_42" target="_blank" >http://dx.doi.org/10.1007/978-3-662-44465-8_42</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-662-44465-8_42" target="_blank" >10.1007/978-3-662-44465-8_42</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational Complexity of Covering Three-Vertex Multigraphs
Popis výsledku v původním jazyce
A covering projection from a graph G to a graph H is a mapping of the vertices of G to the vertices of H such that, for every vertex v of G, the neighborhood of v is mapped bijectively to the neighborhood of its image. Moreover, if G and H are multigraphs, then this local bijection has to preserve multiplicities of the neighbors as well. The notion of covering projection stems from topology, but has found applications in areas such as the theory of local computation and construction of highly symmetricgraphs. It provides a restrictive variant of the constraint satisfaction problem with additional symmetry constraints on the behavior of the homomorphisms of the structures involved. We investigate the computational complexity of the problem of decidingthe existence of a covering projection from an input graph G to a fixed target graph H. Among other partial results this problem has been shown to be NP-hard for simple regular graphs H of valency greater than 2, and a full characterizati
Název v anglickém jazyce
Computational Complexity of Covering Three-Vertex Multigraphs
Popis výsledku anglicky
A covering projection from a graph G to a graph H is a mapping of the vertices of G to the vertices of H such that, for every vertex v of G, the neighborhood of v is mapped bijectively to the neighborhood of its image. Moreover, if G and H are multigraphs, then this local bijection has to preserve multiplicities of the neighbors as well. The notion of covering projection stems from topology, but has found applications in areas such as the theory of local computation and construction of highly symmetricgraphs. It provides a restrictive variant of the constraint satisfaction problem with additional symmetry constraints on the behavior of the homomorphisms of the structures involved. We investigate the computational complexity of the problem of decidingthe existence of a covering projection from an input graph G to a fixed target graph H. Among other partial results this problem has been shown to be NP-hard for simple regular graphs H of valency greater than 2, and a full characterizati
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Foundations of Computer Science 2014
ISBN
978-3-662-44464-1
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
493-504
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Budapest
Datum konání akce
25. 8. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—