Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computational complexity of covering three-vertex multigraphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331737" target="_blank" >RIV/00216208:11320/16:10331737 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.tcs.2015.09.013" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2015.09.013</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2015.09.013" target="_blank" >10.1016/j.tcs.2015.09.013</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computational complexity of covering three-vertex multigraphs

  • Popis výsledku v původním jazyce

    A covering projection from a graph G onto a graph H is a mapping of the vertices of G onto the vertices of H such that, for every vertex v of G, the neighborhood of v is mapped bijectively onto the neighborhood of its image. Moreover, if G and H are multigraphs, then this local bijection has to preserve multiplicities of the neighbors as well. The notion of covering projection stems from topology, but has found applications in areas such as the theory of local computation and construction of highly symmetric graphs. It provides a restrictive variant of the constraint satisfaction problem with additional symmetry constraints on the behavior of the homomorphisms of the structures involved. We investigate the computational complexity of the problem of deciding the existence of a covering projection from an input graph G to a fixed target graph H. Among other partial results this problem has been shown NP-hard for simple regular graphs H of valency greater than 2, and a full characterization of computational complexity has been shown for target multigraphs with 2 vertices. We extend the previously known results to the ternary case, i.e., we give a full characterization of the computational complexity in the case of multigraphs with 3 vertices. We show that even in this case a P/NP-completeness dichotomy holds.

  • Název v anglickém jazyce

    Computational complexity of covering three-vertex multigraphs

  • Popis výsledku anglicky

    A covering projection from a graph G onto a graph H is a mapping of the vertices of G onto the vertices of H such that, for every vertex v of G, the neighborhood of v is mapped bijectively onto the neighborhood of its image. Moreover, if G and H are multigraphs, then this local bijection has to preserve multiplicities of the neighbors as well. The notion of covering projection stems from topology, but has found applications in areas such as the theory of local computation and construction of highly symmetric graphs. It provides a restrictive variant of the constraint satisfaction problem with additional symmetry constraints on the behavior of the homomorphisms of the structures involved. We investigate the computational complexity of the problem of deciding the existence of a covering projection from an input graph G to a fixed target graph H. Among other partial results this problem has been shown NP-hard for simple regular graphs H of valency greater than 2, and a full characterization of computational complexity has been shown for target multigraphs with 2 vertices. We extend the previously known results to the ternary case, i.e., we give a full characterization of the computational complexity in the case of multigraphs with 3 vertices. We show that even in this case a P/NP-completeness dichotomy holds.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

  • Svazek periodika

    609

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    104-117

  • Kód UT WoS článku

    000367488400008

  • EID výsledku v databázi Scopus

    2-s2.0-84948844353