Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computational Complexity of Covering Colored Mixed Multigraphs with Degree Partition Equivalence Classes of Size at Most Two (Extended Abstract)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474472" target="_blank" >RIV/00216208:11320/23:10474472 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-031-43380-1_8" target="_blank" >https://doi.org/10.1007/978-3-031-43380-1_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-43380-1_8" target="_blank" >10.1007/978-3-031-43380-1_8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computational Complexity of Covering Colored Mixed Multigraphs with Degree Partition Equivalence Classes of Size at Most Two (Extended Abstract)

  • Popis výsledku v původním jazyce

    The notion of graph covers (also referred to as locally bijective homomorphisms) plays an important role in topological graph theory and has found its computer science applications in models of local computation. For a fixed target graph H, the H-Cover problem asks if an input graph G allows a graph covering projection onto H. Despite the fact that the quest for characterizing the computational complexity of H-Cover had been started more than 30 years ago, only a handful of general results have been known so far. In this paper, we present a complete characterization of the computational complexity of covering colored graphs for the case that every equivalence class in the degree partition of the target graph has at most two vertices. We prove this result in a very general form. Following the lines of current development of topological graph theory, we study graphs in the most relaxed sense of the definition - the graphs are mixed (they may have both directed and undirected edges), may have multiple edges, loops, and semi-edges. We show that a strong P/NP-co dichotomy holds true in the sense that for each such fixed target graph H, the H-Cover problem is either polynomial time solvable for arbitrary inputs, or NP-complete even for simple input graphs.

  • Název v anglickém jazyce

    Computational Complexity of Covering Colored Mixed Multigraphs with Degree Partition Equivalence Classes of Size at Most Two (Extended Abstract)

  • Popis výsledku anglicky

    The notion of graph covers (also referred to as locally bijective homomorphisms) plays an important role in topological graph theory and has found its computer science applications in models of local computation. For a fixed target graph H, the H-Cover problem asks if an input graph G allows a graph covering projection onto H. Despite the fact that the quest for characterizing the computational complexity of H-Cover had been started more than 30 years ago, only a handful of general results have been known so far. In this paper, we present a complete characterization of the computational complexity of covering colored graphs for the case that every equivalence class in the degree partition of the target graph has at most two vertices. We prove this result in a very general form. Following the lines of current development of topological graph theory, we study graphs in the most relaxed sense of the definition - the graphs are mixed (they may have both directed and undirected edges), may have multiple edges, loops, and semi-edges. We show that a strong P/NP-co dichotomy holds true in the sense that for each such fixed target graph H, the H-Cover problem is either polynomial time solvable for arbitrary inputs, or NP-complete even for simple input graphs.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-15576S" target="_blank" >GA20-15576S: Nakrývání grafů: Symetrie a složitost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  • ISBN

    978-3-031-43379-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    15

  • Strana od-do

    101-115

  • Název nakladatele

    Springer Nature

  • Místo vydání

    Cham

  • Místo konání akce

    Fribourg, Switzerland

  • Datum konání akce

    28. 6. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku