Computational Complexity of Covering Colored Mixed Multigraphs with Degree Partition Equivalence Classes of Size at Most Two (Extended Abstract)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474472" target="_blank" >RIV/00216208:11320/23:10474472 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-43380-1_8" target="_blank" >https://doi.org/10.1007/978-3-031-43380-1_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-43380-1_8" target="_blank" >10.1007/978-3-031-43380-1_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational Complexity of Covering Colored Mixed Multigraphs with Degree Partition Equivalence Classes of Size at Most Two (Extended Abstract)
Popis výsledku v původním jazyce
The notion of graph covers (also referred to as locally bijective homomorphisms) plays an important role in topological graph theory and has found its computer science applications in models of local computation. For a fixed target graph H, the H-Cover problem asks if an input graph G allows a graph covering projection onto H. Despite the fact that the quest for characterizing the computational complexity of H-Cover had been started more than 30 years ago, only a handful of general results have been known so far. In this paper, we present a complete characterization of the computational complexity of covering colored graphs for the case that every equivalence class in the degree partition of the target graph has at most two vertices. We prove this result in a very general form. Following the lines of current development of topological graph theory, we study graphs in the most relaxed sense of the definition - the graphs are mixed (they may have both directed and undirected edges), may have multiple edges, loops, and semi-edges. We show that a strong P/NP-co dichotomy holds true in the sense that for each such fixed target graph H, the H-Cover problem is either polynomial time solvable for arbitrary inputs, or NP-complete even for simple input graphs.
Název v anglickém jazyce
Computational Complexity of Covering Colored Mixed Multigraphs with Degree Partition Equivalence Classes of Size at Most Two (Extended Abstract)
Popis výsledku anglicky
The notion of graph covers (also referred to as locally bijective homomorphisms) plays an important role in topological graph theory and has found its computer science applications in models of local computation. For a fixed target graph H, the H-Cover problem asks if an input graph G allows a graph covering projection onto H. Despite the fact that the quest for characterizing the computational complexity of H-Cover had been started more than 30 years ago, only a handful of general results have been known so far. In this paper, we present a complete characterization of the computational complexity of covering colored graphs for the case that every equivalence class in the degree partition of the target graph has at most two vertices. We prove this result in a very general form. Following the lines of current development of topological graph theory, we study graphs in the most relaxed sense of the definition - the graphs are mixed (they may have both directed and undirected edges), may have multiple edges, loops, and semi-edges. We show that a strong P/NP-co dichotomy holds true in the sense that for each such fixed target graph H, the H-Cover problem is either polynomial time solvable for arbitrary inputs, or NP-complete even for simple input graphs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-15576S" target="_blank" >GA20-15576S: Nakrývání grafů: Symetrie a složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-031-43379-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
15
Strana od-do
101-115
Název nakladatele
Springer Nature
Místo vydání
Cham
Místo konání akce
Fribourg, Switzerland
Datum konání akce
28. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—