Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimal correction of the absolute value equations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437026" target="_blank" >RIV/00216208:11320/21:10437026 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=UXQfjBq3ue" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=UXQfjBq3ue</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10898-020-00948-2" target="_blank" >10.1007/s10898-020-00948-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimal correction of the absolute value equations

  • Popis výsledku v původním jazyce

    In this paper, we study the optimum correction of the absolute value equations through making minimal changes in the coefficient matrix and the right hand side vector and using spectral norm. This problem can be formulated as a non-differentiable, non-convex and unconstrained fractional quadratic programming problem. The regularized least squares is applied for stabilizing the solution of the fractional problem. The regularized problem is reduced to a unimodal single variable minimization problem and to solve it a bisection algorithm is proposed. The main difficulty of the algorithm is a complicated constraint optimization problem, for which two novel methods are suggested. We also present optimality conditions and bounds for the norm of the optimal solutions. Numerical experiments are given to demonstrate the effectiveness of suggested methods. (C) 2020, Springer Science+Business Media, LLC, part of Springer Nature.

  • Název v anglickém jazyce

    Optimal correction of the absolute value equations

  • Popis výsledku anglicky

    In this paper, we study the optimum correction of the absolute value equations through making minimal changes in the coefficient matrix and the right hand side vector and using spectral norm. This problem can be formulated as a non-differentiable, non-convex and unconstrained fractional quadratic programming problem. The regularized least squares is applied for stabilizing the solution of the fractional problem. The regularized problem is reduced to a unimodal single variable minimization problem and to solve it a bisection algorithm is proposed. The main difficulty of the algorithm is a complicated constraint optimization problem, for which two novel methods are suggested. We also present optimality conditions and bounds for the norm of the optimal solutions. Numerical experiments are given to demonstrate the effectiveness of suggested methods. (C) 2020, Springer Science+Business Media, LLC, part of Springer Nature.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50201 - Economic Theory

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-04735S" target="_blank" >GA18-04735S: Nové přístupy pro relaxační a aproximační techniky v deterministické globální optimalizaci</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Global Optimization

  • ISSN

    0925-5001

  • e-ISSN

  • Svazek periodika

    79

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    23

  • Strana od-do

    645-667

  • Kód UT WoS článku

    000587048100001

  • EID výsledku v databázi Scopus

    2-s2.0-85095408377