Distributionally robust scheduling algorithms for total flow time minimization on parallel machines using norm regularizations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00354299" target="_blank" >RIV/68407700:21230/22:00354299 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/22:00354299
Výsledek na webu
<a href="https://doi.org/10.1016/j.ejor.2022.01.002" target="_blank" >https://doi.org/10.1016/j.ejor.2022.01.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejor.2022.01.002" target="_blank" >10.1016/j.ejor.2022.01.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Distributionally robust scheduling algorithms for total flow time minimization on parallel machines using norm regularizations
Popis výsledku v původním jazyce
In this paper, we study a distributionally robust parallel machines scheduling problem, minimizing the total flow time criterion. The distribution of uncertain processing times is subject to ambiguity belonging to a set of distributions with constrained mean and covariance. We show that the problem can be cast as a deterministic optimization problem, with the objective function composed of an expectation and a regularization term given as an ℓp norm. The main question we ask and answer is whether the particular choice of the used ℓp norm affects the computational complexity of the problem and the robustness of its solution. We prove that if durations of the jobs are independent, the solution in terms of any ℓp norm can be solved in a pseudopolynomial time, by the reduction to a non-linear bipartite matching problem. We also show an efficient, polynomial-time algorithm for ℓ1 case. Furthermore, for instances with dependent durations of the jobs, we propose computationally efficient formulation and an algorithm that uses ℓ1 norm. Moreover, we identify a class of covariance matrices admitting a faster, polynomial-time algorithm. The computational experiments show that the proposed algorithms provide solutions with a similar quality to the existing algorithms while having significantly better computational complexities.
Název v anglickém jazyce
Distributionally robust scheduling algorithms for total flow time minimization on parallel machines using norm regularizations
Popis výsledku anglicky
In this paper, we study a distributionally robust parallel machines scheduling problem, minimizing the total flow time criterion. The distribution of uncertain processing times is subject to ambiguity belonging to a set of distributions with constrained mean and covariance. We show that the problem can be cast as a deterministic optimization problem, with the objective function composed of an expectation and a regularization term given as an ℓp norm. The main question we ask and answer is whether the particular choice of the used ℓp norm affects the computational complexity of the problem and the robustness of its solution. We prove that if durations of the jobs are independent, the solution in terms of any ℓp norm can be solved in a pseudopolynomial time, by the reduction to a non-linear bipartite matching problem. We also show an efficient, polynomial-time algorithm for ℓ1 case. Furthermore, for instances with dependent durations of the jobs, we propose computationally efficient formulation and an algorithm that uses ℓ1 norm. Moreover, we identify a class of covariance matrices admitting a faster, polynomial-time algorithm. The computational experiments show that the proposed algorithms provide solutions with a similar quality to the existing algorithms while having significantly better computational complexities.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-31670S" target="_blank" >GA22-31670S: Rozvrhování prováděných testů ve zdravotnických laboratořích: zkrácení doby dodání výsledku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Operational Research
ISSN
0377-2217
e-ISSN
1872-6860
Svazek periodika
302
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
438-455
Kód UT WoS článku
000829764400003
EID výsledku v databázi Scopus
2-s2.0-85124263563