Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Distributionally robust scheduling algorithms for total flow time minimization on parallel machines using norm regularizations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00354299" target="_blank" >RIV/68407700:21230/22:00354299 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/22:00354299

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ejor.2022.01.002" target="_blank" >https://doi.org/10.1016/j.ejor.2022.01.002</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejor.2022.01.002" target="_blank" >10.1016/j.ejor.2022.01.002</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Distributionally robust scheduling algorithms for total flow time minimization on parallel machines using norm regularizations

  • Popis výsledku v původním jazyce

    In this paper, we study a distributionally robust parallel machines scheduling problem, minimizing the total flow time criterion. The distribution of uncertain processing times is subject to ambiguity belonging to a set of distributions with constrained mean and covariance. We show that the problem can be cast as a deterministic optimization problem, with the objective function composed of an expectation and a regularization term given as an ℓp norm. The main question we ask and answer is whether the particular choice of the used ℓp norm affects the computational complexity of the problem and the robustness of its solution. We prove that if durations of the jobs are independent, the solution in terms of any ℓp norm can be solved in a pseudopolynomial time, by the reduction to a non-linear bipartite matching problem. We also show an efficient, polynomial-time algorithm for ℓ1 case. Furthermore, for instances with dependent durations of the jobs, we propose computationally efficient formulation and an algorithm that uses ℓ1 norm. Moreover, we identify a class of covariance matrices admitting a faster, polynomial-time algorithm. The computational experiments show that the proposed algorithms provide solutions with a similar quality to the existing algorithms while having significantly better computational complexities.

  • Název v anglickém jazyce

    Distributionally robust scheduling algorithms for total flow time minimization on parallel machines using norm regularizations

  • Popis výsledku anglicky

    In this paper, we study a distributionally robust parallel machines scheduling problem, minimizing the total flow time criterion. The distribution of uncertain processing times is subject to ambiguity belonging to a set of distributions with constrained mean and covariance. We show that the problem can be cast as a deterministic optimization problem, with the objective function composed of an expectation and a regularization term given as an ℓp norm. The main question we ask and answer is whether the particular choice of the used ℓp norm affects the computational complexity of the problem and the robustness of its solution. We prove that if durations of the jobs are independent, the solution in terms of any ℓp norm can be solved in a pseudopolynomial time, by the reduction to a non-linear bipartite matching problem. We also show an efficient, polynomial-time algorithm for ℓ1 case. Furthermore, for instances with dependent durations of the jobs, we propose computationally efficient formulation and an algorithm that uses ℓ1 norm. Moreover, we identify a class of covariance matrices admitting a faster, polynomial-time algorithm. The computational experiments show that the proposed algorithms provide solutions with a similar quality to the existing algorithms while having significantly better computational complexities.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-31670S" target="_blank" >GA22-31670S: Rozvrhování prováděných testů ve zdravotnických laboratořích: zkrácení doby dodání výsledku</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    European Journal of Operational Research

  • ISSN

    0377-2217

  • e-ISSN

    1872-6860

  • Svazek periodika

    302

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

    438-455

  • Kód UT WoS článku

    000829764400003

  • EID výsledku v databázi Scopus

    2-s2.0-85124263563