Parameterized Algorithms for MILPs with Small Treedepth
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437108" target="_blank" >RIV/00216208:11320/21:10437108 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameterized Algorithms for MILPs with Small Treedepth
Popis výsledku v původním jazyce
Solving (mixed) integer (linear) programs, (M)I(L)Ps for short, is a fundamental optimisation task with a wide range of applications in artificial intelligence and computer science in general. While hard in general, recent years have brought about vast progress for solving structurally restricted, (nonmixed) ILPs: n-fold, tree-fold, 2-stage stochastic and multistage stochastic programs admit efficient algorithms, and all of these special cases are subsumed by the class of ILPs of small treedepth. In this paper, we extend this line of work to the mixed case, by showing an algorithm solving MILP in time f (a, d) poly(n), where a is the largest coefficient of the constraint matrix, d is its treedepth, and n is the number of variables. This is enabled by proving bounds on the denominators (fractionality) of the vertices of bounded-treedepth (non-integer) linear programs. We do so by carefully analysing the inverses of invertible sub-matrices of the constraint matrix. This allows us to afford scaling up the mixed program to the integer grid, and applying the known methods for integer programs. We then trace the limiting boundary of our "bounded fractionality" approach both in terms of going beyond MILP (by allowing non-linear objectives) as well as its usefulness for generalising other important known tractable classes of ILP. On the positive side, we show that our result can be generalised from MILP to MIP with piece-wise linear separable convex objectives with integer breakpoints. On the negative side, we show that going even slightly beyond such objectives or considering other natural related tractable classes of ILP leads to unbounded fractionality. Finally, we show that restricting the structure of only the integral variables in the constraint matrix does not yield tractable special cases.
Název v anglickém jazyce
Parameterized Algorithms for MILPs with Small Treedepth
Popis výsledku anglicky
Solving (mixed) integer (linear) programs, (M)I(L)Ps for short, is a fundamental optimisation task with a wide range of applications in artificial intelligence and computer science in general. While hard in general, recent years have brought about vast progress for solving structurally restricted, (nonmixed) ILPs: n-fold, tree-fold, 2-stage stochastic and multistage stochastic programs admit efficient algorithms, and all of these special cases are subsumed by the class of ILPs of small treedepth. In this paper, we extend this line of work to the mixed case, by showing an algorithm solving MILP in time f (a, d) poly(n), where a is the largest coefficient of the constraint matrix, d is its treedepth, and n is the number of variables. This is enabled by proving bounds on the denominators (fractionality) of the vertices of bounded-treedepth (non-integer) linear programs. We do so by carefully analysing the inverses of invertible sub-matrices of the constraint matrix. This allows us to afford scaling up the mixed program to the integer grid, and applying the known methods for integer programs. We then trace the limiting boundary of our "bounded fractionality" approach both in terms of going beyond MILP (by allowing non-linear objectives) as well as its usefulness for generalising other important known tractable classes of ILP. On the positive side, we show that our result can be generalised from MILP to MIP with piece-wise linear separable convex objectives with integer breakpoints. On the negative side, we show that going even slightly beyond such objectives or considering other natural related tractable classes of ILP leads to unbounded fractionality. Finally, we show that restricting the structure of only the integral variables in the constraint matrix does not yield tractable special cases.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE
ISBN
978-1-57735-866-4
ISSN
2159-5399
e-ISSN
2374-3468
Počet stran výsledku
9
Strana od-do
12249-12257
Název nakladatele
ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE
Místo vydání
PALO ALTO
Místo konání akce
Virtuální
Datum konání akce
2. 2. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000681269803105