Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Parameterized Algorithms for MILPs with Small Treedepth

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437108" target="_blank" >RIV/00216208:11320/21:10437108 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Parameterized Algorithms for MILPs with Small Treedepth

  • Popis výsledku v původním jazyce

    Solving (mixed) integer (linear) programs, (M)I(L)Ps for short, is a fundamental optimisation task with a wide range of applications in artificial intelligence and computer science in general. While hard in general, recent years have brought about vast progress for solving structurally restricted, (nonmixed) ILPs: n-fold, tree-fold, 2-stage stochastic and multistage stochastic programs admit efficient algorithms, and all of these special cases are subsumed by the class of ILPs of small treedepth. In this paper, we extend this line of work to the mixed case, by showing an algorithm solving MILP in time f (a, d) poly(n), where a is the largest coefficient of the constraint matrix, d is its treedepth, and n is the number of variables. This is enabled by proving bounds on the denominators (fractionality) of the vertices of bounded-treedepth (non-integer) linear programs. We do so by carefully analysing the inverses of invertible sub-matrices of the constraint matrix. This allows us to afford scaling up the mixed program to the integer grid, and applying the known methods for integer programs. We then trace the limiting boundary of our &quot;bounded fractionality&quot; approach both in terms of going beyond MILP (by allowing non-linear objectives) as well as its usefulness for generalising other important known tractable classes of ILP. On the positive side, we show that our result can be generalised from MILP to MIP with piece-wise linear separable convex objectives with integer breakpoints. On the negative side, we show that going even slightly beyond such objectives or considering other natural related tractable classes of ILP leads to unbounded fractionality. Finally, we show that restricting the structure of only the integral variables in the constraint matrix does not yield tractable special cases.

  • Název v anglickém jazyce

    Parameterized Algorithms for MILPs with Small Treedepth

  • Popis výsledku anglicky

    Solving (mixed) integer (linear) programs, (M)I(L)Ps for short, is a fundamental optimisation task with a wide range of applications in artificial intelligence and computer science in general. While hard in general, recent years have brought about vast progress for solving structurally restricted, (nonmixed) ILPs: n-fold, tree-fold, 2-stage stochastic and multistage stochastic programs admit efficient algorithms, and all of these special cases are subsumed by the class of ILPs of small treedepth. In this paper, we extend this line of work to the mixed case, by showing an algorithm solving MILP in time f (a, d) poly(n), where a is the largest coefficient of the constraint matrix, d is its treedepth, and n is the number of variables. This is enabled by proving bounds on the denominators (fractionality) of the vertices of bounded-treedepth (non-integer) linear programs. We do so by carefully analysing the inverses of invertible sub-matrices of the constraint matrix. This allows us to afford scaling up the mixed program to the integer grid, and applying the known methods for integer programs. We then trace the limiting boundary of our &quot;bounded fractionality&quot; approach both in terms of going beyond MILP (by allowing non-linear objectives) as well as its usefulness for generalising other important known tractable classes of ILP. On the positive side, we show that our result can be generalised from MILP to MIP with piece-wise linear separable convex objectives with integer breakpoints. On the negative side, we show that going even slightly beyond such objectives or considering other natural related tractable classes of ILP leads to unbounded fractionality. Finally, we show that restricting the structure of only the integral variables in the constraint matrix does not yield tractable special cases.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE

  • ISBN

    978-1-57735-866-4

  • ISSN

    2159-5399

  • e-ISSN

    2374-3468

  • Počet stran výsledku

    9

  • Strana od-do

    12249-12257

  • Název nakladatele

    ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE

  • Místo vydání

    PALO ALTO

  • Místo konání akce

    Virtuální

  • Datum konání akce

    2. 2. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000681269803105