A Parameterized Strongly Polynomial Algorithm for Block Structured Integer Programs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386781" target="_blank" >RIV/00216208:11320/18:10386781 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.ICALP.2018.85" target="_blank" >https://doi.org/10.4230/LIPIcs.ICALP.2018.85</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.85" target="_blank" >10.4230/LIPIcs.ICALP.2018.85</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Parameterized Strongly Polynomial Algorithm for Block Structured Integer Programs
Popis výsledku v původním jazyce
The theory of n-fold integer programming has been recently emerging as an important tool in parameterized complexity. The input to an n-fold integer program (IP) consists of parameter A, dimension n, and numerical data of binary encoding length L. It was known for some time that such programs can be solved in polynomial time using O(n^{g(A)}L) arithmetic operations where g is an exponential function of the parameter. In 2013 it was shown that it can be solved in fixed-parameter tractable time using O(f(A)n^3L) arithmetic operations for a single-exponential function f. This, and a faster algorithm for a special case of combinatorial n-fold IP, have led to several very recent breakthroughs in the parameterized complexity of scheduling, stringology, and computational social choice. In 2015 it was shown that it can be solved in strongly polynomial time using O(n^{g(A)}) arithmetic operations. Here we establish a result which subsumes all three of the above results by showing that n-fold IP can be solved in strongly polynomial fixed-parameter tractable time using O(f(A)n^6 log n) arithmetic operations. In fact, our results are much more general, briefly outlined as follows. - There is a strongly polynomial algorithm for integer linear programming (ILP) whenever a so-called Graver-best oracle is realizable for it. - Graver-best oracles for the large classes of multi-stage stochastic and tree-fold ILPs can be realized in fixed-parameter tractable time. Together with the previous oracle algorithm, this newly shows two large classes of ILP to be strongly polynomial; in contrast, only few classes of ILP were previously known to be strongly polynomial. - We show that ILP is fixed-parameter tractable parameterized by the largest coefficient |A |_infty and the primal or dual treedepth of A, and that this parameterization cannot be relaxed, signifying substantial progress in understanding the parameterized complexity of ILP.
Název v anglickém jazyce
A Parameterized Strongly Polynomial Algorithm for Block Structured Integer Programs
Popis výsledku anglicky
The theory of n-fold integer programming has been recently emerging as an important tool in parameterized complexity. The input to an n-fold integer program (IP) consists of parameter A, dimension n, and numerical data of binary encoding length L. It was known for some time that such programs can be solved in polynomial time using O(n^{g(A)}L) arithmetic operations where g is an exponential function of the parameter. In 2013 it was shown that it can be solved in fixed-parameter tractable time using O(f(A)n^3L) arithmetic operations for a single-exponential function f. This, and a faster algorithm for a special case of combinatorial n-fold IP, have led to several very recent breakthroughs in the parameterized complexity of scheduling, stringology, and computational social choice. In 2015 it was shown that it can be solved in strongly polynomial time using O(n^{g(A)}) arithmetic operations. Here we establish a result which subsumes all three of the above results by showing that n-fold IP can be solved in strongly polynomial fixed-parameter tractable time using O(f(A)n^6 log n) arithmetic operations. In fact, our results are much more general, briefly outlined as follows. - There is a strongly polynomial algorithm for integer linear programming (ILP) whenever a so-called Graver-best oracle is realizable for it. - Graver-best oracles for the large classes of multi-stage stochastic and tree-fold ILPs can be realized in fixed-parameter tractable time. Together with the previous oracle algorithm, this newly shows two large classes of ILP to be strongly polynomial; in contrast, only few classes of ILP were previously known to be strongly polynomial. - We show that ILP is fixed-parameter tractable parameterized by the largest coefficient |A |_infty and the primal or dual treedepth of A, and that this parameterization cannot be relaxed, signifying substantial progress in understanding the parameterized complexity of ILP.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-09142S" target="_blank" >GA17-09142S: Moderní algoritmy: Nové výzvy komplexních dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)
ISBN
978-3-95977-076-7
ISSN
1868-8969
e-ISSN
neuvedeno
Počet stran výsledku
14
Strana od-do
1-14
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl
Místo konání akce
Praha
Datum konání akce
9. 7. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—