Breaking the barrier of 2 for the competitiveness of longest queue drop
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438025" target="_blank" >RIV/00216208:11320/21:10438025 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.ICALP.2021.17" target="_blank" >https://doi.org/10.4230/LIPIcs.ICALP.2021.17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2021.17" target="_blank" >10.4230/LIPIcs.ICALP.2021.17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Breaking the barrier of 2 for the competitiveness of longest queue drop
Popis výsledku v původním jazyce
We consider the problem of managing the buffer of a shared-memory switch that transmits packets of unit value. A shared-memory switch consists of an input port, a number of output ports, and a buffer with a specific capacity. In each time step, an arbitrary number of packets arrive at the input port, each packet designated for one output port. Each packet is added to the queue of the respective output port. If the total number of packets exceeds the capacity of the buffer, some packets have to be irrevocably rejected. At the end of each time step, each output port transmits a packet in its queue and the goal is to maximize the number of transmitted packets. The Longest Queue Drop (LQD) online algorithm accepts any arriving packet to the buffer. However, if this results in the buffer exceeding its memory capacity, then LQD drops a packet from the back of whichever queue is currently the longest, breaking ties arbitrarily. The LQD algorithm was first introduced in 1991, and is known to be 2-competitive since 2001. Although LQD remains the best known online algorithm for the problem and is of practical interest, determining its true competitiveness is a long-standing open problem. We show that LQD is 1.707-competitive, establishing the first (2 - ELEMENT OF) upper bound for the competitive ratio of LQD, for a constant ELEMENT OF > 0. (C) 2021 Antonios Antoniadis, Matthias Englert, Nicolaos Matsakis, and Pavel Veselý.
Název v anglickém jazyce
Breaking the barrier of 2 for the competitiveness of longest queue drop
Popis výsledku anglicky
We consider the problem of managing the buffer of a shared-memory switch that transmits packets of unit value. A shared-memory switch consists of an input port, a number of output ports, and a buffer with a specific capacity. In each time step, an arbitrary number of packets arrive at the input port, each packet designated for one output port. Each packet is added to the queue of the respective output port. If the total number of packets exceeds the capacity of the buffer, some packets have to be irrevocably rejected. At the end of each time step, each output port transmits a packet in its queue and the goal is to maximize the number of transmitted packets. The Longest Queue Drop (LQD) online algorithm accepts any arriving packet to the buffer. However, if this results in the buffer exceeding its memory capacity, then LQD drops a packet from the back of whichever queue is currently the longest, breaking ties arbitrarily. The LQD algorithm was first introduced in 1991, and is known to be 2-competitive since 2001. Although LQD remains the best known online algorithm for the problem and is of practical interest, determining its true competitiveness is a long-standing open problem. We show that LQD is 1.707-competitive, establishing the first (2 - ELEMENT OF) upper bound for the competitive ratio of LQD, for a constant ELEMENT OF > 0. (C) 2021 Antonios Antoniadis, Matthias Englert, Nicolaos Matsakis, and Pavel Veselý.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)
ISBN
978-3-95977-195-5
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
20
Strana od-do
—
Název nakladatele
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Místo vydání
Dagstuhl, Germany
Místo konání akce
Virtual (Glasgow, Scotland)
Datum konání akce
12. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—