Edge-decomposing graphs into coprime forests
Popis výsledku
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wBGGcbCYw0
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Edge-decomposing graphs into coprime forests
Popis výsledku v původním jazyce
The Barat-Thomassen conjecture, recently proved in Bensmail et al. (2017), asserts that for every tree T, there is a constant c T such that every c T-edge-connected graph G with number of edges (size) divisible by the size of T admits an edge partition into copies of T (a T-decomposition). In this paper, we investigate in which case the connectivity requirement can be dropped to a minimum degree condition. For instance, it was shown in Bensmail et al. (2019) that when T is a path with k edges, there is a constant d k such that every 24-edge-connected graph G with size divisible by k and minimum degree d k has a T-decomposition. We show in this paper that when F is a coprime forest (the sizes of its components being a coprime set of integers), any graph G with sufficiently large minimum degree has an F-decomposition provided that the size of F divides the size of G (no connectivity is required). A natural conjecture asked in Bensmail et al. (2019) asserts that for a fixed tree T, any graph G of size divisible by the size of T with sufficiently high minimum degree has a T-decomposition, provided that G is sufficiently highly connected in terms of the maximal degree of T. The case of maximum degree 2 is answered by paths. We provide a counterexample to this conjecture in the case of maximum degree 3.
Název v anglickém jazyce
Edge-decomposing graphs into coprime forests
Popis výsledku anglicky
The Barat-Thomassen conjecture, recently proved in Bensmail et al. (2017), asserts that for every tree T, there is a constant c T such that every c T-edge-connected graph G with number of edges (size) divisible by the size of T admits an edge partition into copies of T (a T-decomposition). In this paper, we investigate in which case the connectivity requirement can be dropped to a minimum degree condition. For instance, it was shown in Bensmail et al. (2019) that when T is a path with k edges, there is a constant d k such that every 24-edge-connected graph G with size divisible by k and minimum degree d k has a T-decomposition. We show in this paper that when F is a coprime forest (the sizes of its components being a coprime set of integers), any graph G with sufficiently large minimum degree has an F-decomposition provided that the size of F divides the size of G (no connectivity is required). A natural conjecture asked in Bensmail et al. (2019) asserts that for a fixed tree T, any graph G of size divisible by the size of T with sufficiently high minimum degree has a T-decomposition, provided that G is sufficiently highly connected in terms of the maximal degree of T. The case of maximum degree 2 is answered by paths. We provide a counterexample to this conjecture in the case of maximum degree 3.
Klasifikace
Druh
Jimp - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Svazek periodika
97
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
21-33
Kód UT WoS článku
000585798000001
EID výsledku v databázi Scopus
2-s2.0-85094641212
Základní informace
Druh výsledku
Jimp - Článek v periodiku v databázi Web of Science
OECD FORD
Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Rok uplatnění
2021