Decomposing graphs into paths and trees
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368795" target="_blank" >RIV/00216208:11320/17:10368795 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.endm.2017.07.032" target="_blank" >http://dx.doi.org/10.1016/j.endm.2017.07.032</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2017.07.032" target="_blank" >10.1016/j.endm.2017.07.032</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decomposing graphs into paths and trees
Popis výsledku v původním jazyce
In [Bensmail, J., A. Harutyunyan, T.-N. Le and S. Thomassé, Edge-partitioning a graph into paths: beyond the Barát-Thomassen conjecture, arXiv preprint arXiv:1507.08208 (2015)], the authors conjecture that for a fixed tree T, the edge set of any graph G of size divisible by size of T with sufficiently high degree can be decomposed into disjoint copies of T, provided that G is sufficiently highly connected in terms of maximal degree of T. In [Bensmail, J., A. Harutyunyan, T.-N. Le and S. Thomassé, Edge-partitioning a graph into paths: beyond the Barát-Thomassen conjecture, arXiv preprint arXiv:1507.08208 (2015)], the conjecture was proven for trees of maximal degree 2 (i.e., paths). In particular, it was shown that in the case of paths, the conjecture holds for 24-edge-connected graphs. We improve this result showing that 3-edge-connectivity suffices, which is best possible. We disprove the conjecture for trees of maximum degree greater than two and prove a relaxed version of the conjecture that concerns decomposing the edge set of a graph into disjoint copies of two fixed trees of coprime sizes.
Název v anglickém jazyce
Decomposing graphs into paths and trees
Popis výsledku anglicky
In [Bensmail, J., A. Harutyunyan, T.-N. Le and S. Thomassé, Edge-partitioning a graph into paths: beyond the Barát-Thomassen conjecture, arXiv preprint arXiv:1507.08208 (2015)], the authors conjecture that for a fixed tree T, the edge set of any graph G of size divisible by size of T with sufficiently high degree can be decomposed into disjoint copies of T, provided that G is sufficiently highly connected in terms of maximal degree of T. In [Bensmail, J., A. Harutyunyan, T.-N. Le and S. Thomassé, Edge-partitioning a graph into paths: beyond the Barát-Thomassen conjecture, arXiv preprint arXiv:1507.08208 (2015)], the conjecture was proven for trees of maximal degree 2 (i.e., paths). In particular, it was shown that in the case of paths, the conjecture holds for 24-edge-connected graphs. We improve this result showing that 3-edge-connectivity suffices, which is best possible. We disprove the conjecture for trees of maximum degree greater than two and prove a relaxed version of the conjecture that concerns decomposing the edge set of a graph into disjoint copies of two fixed trees of coprime sizes.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Svazek periodika
61
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
751-757
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85026765866