Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Decomposing graphs into paths and trees

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368795" target="_blank" >RIV/00216208:11320/17:10368795 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.endm.2017.07.032" target="_blank" >http://dx.doi.org/10.1016/j.endm.2017.07.032</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.endm.2017.07.032" target="_blank" >10.1016/j.endm.2017.07.032</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Decomposing graphs into paths and trees

  • Popis výsledku v původním jazyce

    In [Bensmail, J., A. Harutyunyan, T.-N. Le and S. Thomassé, Edge-partitioning a graph into paths: beyond the Barát-Thomassen conjecture, arXiv preprint arXiv:1507.08208 (2015)], the authors conjecture that for a fixed tree T, the edge set of any graph G of size divisible by size of T with sufficiently high degree can be decomposed into disjoint copies of T, provided that G is sufficiently highly connected in terms of maximal degree of T. In [Bensmail, J., A. Harutyunyan, T.-N. Le and S. Thomassé, Edge-partitioning a graph into paths: beyond the Barát-Thomassen conjecture, arXiv preprint arXiv:1507.08208 (2015)], the conjecture was proven for trees of maximal degree 2 (i.e., paths). In particular, it was shown that in the case of paths, the conjecture holds for 24-edge-connected graphs. We improve this result showing that 3-edge-connectivity suffices, which is best possible. We disprove the conjecture for trees of maximum degree greater than two and prove a relaxed version of the conjecture that concerns decomposing the edge set of a graph into disjoint copies of two fixed trees of coprime sizes.

  • Název v anglickém jazyce

    Decomposing graphs into paths and trees

  • Popis výsledku anglicky

    In [Bensmail, J., A. Harutyunyan, T.-N. Le and S. Thomassé, Edge-partitioning a graph into paths: beyond the Barát-Thomassen conjecture, arXiv preprint arXiv:1507.08208 (2015)], the authors conjecture that for a fixed tree T, the edge set of any graph G of size divisible by size of T with sufficiently high degree can be decomposed into disjoint copies of T, provided that G is sufficiently highly connected in terms of maximal degree of T. In [Bensmail, J., A. Harutyunyan, T.-N. Le and S. Thomassé, Edge-partitioning a graph into paths: beyond the Barát-Thomassen conjecture, arXiv preprint arXiv:1507.08208 (2015)], the conjecture was proven for trees of maximal degree 2 (i.e., paths). In particular, it was shown that in the case of paths, the conjecture holds for 24-edge-connected graphs. We improve this result showing that 3-edge-connectivity suffices, which is best possible. We disprove the conjecture for trees of maximum degree greater than two and prove a relaxed version of the conjecture that concerns decomposing the edge set of a graph into disjoint copies of two fixed trees of coprime sizes.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electronic Notes in Discrete Mathematics

  • ISSN

    1571-0653

  • e-ISSN

  • Svazek periodika

    61

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    7

  • Strana od-do

    751-757

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85026765866