Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

VCRIX - A volatility index for crypto-currencies

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438365" target="_blank" >RIV/00216208:11320/21:10438365 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kM1bCML2ai" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kM1bCML2ai</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.irfa.2021.101915" target="_blank" >10.1016/j.irfa.2021.101915</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    VCRIX - A volatility index for crypto-currencies

  • Popis výsledku v původním jazyce

    Public interest, explosive returns, and diversification opportunities gave stimulus to the adoption of traditional financial tools to crypto-currencies. While the CRIX offered the first scientifically-backed proxy to the cryptomarket (analogous to S&amp;P 500), measuring the forward-oriented risk in the crypto-currency market posed a challenge of a different kind. Following the intuition of the &quot;fear index&quot;VIX for the American stock market, the VCRIX volatility index was created to capture the investor expectations about the crypto-currency ecosystem. VCRIX is built based on CRIX and offers a forecast based on the Heterogeneous Auto-Regressive (HAR) model. The HAR model was selected as the most suitable out of a horse race of volatility models, with two proxies for implied volatility, namely the 30 days mean annualized volatility and realized volatility. The model was further examined by the simulation of VIX (resulting in a correlation of 78% between the actual VIX and a &quot;VIX&quot;version estimated with the VCRIX technology). Trading strategies confirmed the predictive power of VCRIX and supported the selection of the 30 days means annualized volatility proxy. The best performing trading strategy with the use of VCRIX outperformed the benchmark strategy for 99.8% of the tested period and 164% additional returns. VCRIX provides forecasting functionality and serves as a proxy for the investors&apos; expectations in the absence of a developed crypto derivatives market. These features provide enhanced decision making capacities for market monitoring, trading strategies, and potentially option pricing.

  • Název v anglickém jazyce

    VCRIX - A volatility index for crypto-currencies

  • Popis výsledku anglicky

    Public interest, explosive returns, and diversification opportunities gave stimulus to the adoption of traditional financial tools to crypto-currencies. While the CRIX offered the first scientifically-backed proxy to the cryptomarket (analogous to S&amp;P 500), measuring the forward-oriented risk in the crypto-currency market posed a challenge of a different kind. Following the intuition of the &quot;fear index&quot;VIX for the American stock market, the VCRIX volatility index was created to capture the investor expectations about the crypto-currency ecosystem. VCRIX is built based on CRIX and offers a forecast based on the Heterogeneous Auto-Regressive (HAR) model. The HAR model was selected as the most suitable out of a horse race of volatility models, with two proxies for implied volatility, namely the 30 days mean annualized volatility and realized volatility. The model was further examined by the simulation of VIX (resulting in a correlation of 78% between the actual VIX and a &quot;VIX&quot;version estimated with the VCRIX technology). Trading strategies confirmed the predictive power of VCRIX and supported the selection of the 30 days means annualized volatility proxy. The best performing trading strategy with the use of VCRIX outperformed the benchmark strategy for 99.8% of the tested period and 164% additional returns. VCRIX provides forecasting functionality and serves as a proxy for the investors&apos; expectations in the absence of a developed crypto derivatives market. These features provide enhanced decision making capacities for market monitoring, trading strategies, and potentially option pricing.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-28231X" target="_blank" >GX19-28231X: Dynamické modely pro digitální finance</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Review of Financial Analysis

  • ISSN

    1057-5219

  • e-ISSN

  • Svazek periodika

    78

  • Číslo periodika v rámci svazku

    November 2021

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    101915

  • Kód UT WoS článku

    000711503800013

  • EID výsledku v databázi Scopus

    2-s2.0-85117793092