Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F20%3A00114078" target="_blank" >RIV/00216224:14560/20:00114078 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0169207019302250" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0169207019302250</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijforecast.2019.08.002" target="_blank" >10.1016/j.ijforecast.2019.08.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?
Popis výsledku v původním jazyce
We study the potential merits of using trading and non-trading period market volatilities to model and forecast the stock volatility over the next one to 22 days. We demonstrate the role of overnight volatility information by estimating heterogeneous autoregressive (HAR) model specifications with and without a trading period market risk factor using ten years of high-frequency data for the 431 constituents of the S&P 500 index. The stocks’ own overnight squared returns perform poorly across stocks and forecast horizons, as well as in the asset allocation exercise. In contrast, we find overwhelming evidence that the market-level volatility, proxied by S&P Mini futures, matters significantly for improving the model fit and volatility forecasting accuracy. The greatest model fit and forecast improvements are found for short-term forecast horizons of up to five trading days, and for the non-trading period market-level volatility. The documented increase in forecast accuracy is found to be associated with the stocks’ sensitivity to the market risk factor. Finally, we show that both the trading and non-trading period market realized volatilities are relevant in an asset allocation context, as they increase the average returns, Sharpe ratios and certainty equivalent returns of a mean–variance investor.
Název v anglickém jazyce
Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?
Popis výsledku anglicky
We study the potential merits of using trading and non-trading period market volatilities to model and forecast the stock volatility over the next one to 22 days. We demonstrate the role of overnight volatility information by estimating heterogeneous autoregressive (HAR) model specifications with and without a trading period market risk factor using ten years of high-frequency data for the 431 constituents of the S&P 500 index. The stocks’ own overnight squared returns perform poorly across stocks and forecast horizons, as well as in the asset allocation exercise. In contrast, we find overwhelming evidence that the market-level volatility, proxied by S&P Mini futures, matters significantly for improving the model fit and volatility forecasting accuracy. The greatest model fit and forecast improvements are found for short-term forecast horizons of up to five trading days, and for the non-trading period market-level volatility. The documented increase in forecast accuracy is found to be associated with the stocks’ sensitivity to the market risk factor. Finally, we show that both the trading and non-trading period market realized volatilities are relevant in an asset allocation context, as they increase the average returns, Sharpe ratios and certainty equivalent returns of a mean–variance investor.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-05829S" target="_blank" >GA18-05829S: Predikce volatility na rozvijících se finančních trzích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Forecasting
ISSN
0169-2070
e-ISSN
1872-8200
Svazek periodika
36
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
628-645
Kód UT WoS článku
000527898100025
EID výsledku v databázi Scopus
2-s2.0-85076251581