Stock market volatility forecasting: Do we need high-frequency data?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F21%3A00119320" target="_blank" >RIV/00216224:14560/21:00119320 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61384399:31110/21:00056547
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0169207020301874" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0169207020301874</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijforecast.2020.12.001" target="_blank" >10.1016/j.ijforecast.2020.12.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stock market volatility forecasting: Do we need high-frequency data?
Popis výsledku v původním jazyce
The general consensus in the volatility forecasting literature is that high-frequency volatility models outperform low-frequency volatility models. However, such a conclusion is reached when low-frequency volatility models are estimated from daily returns. Instead, we study this question considering daily, low-frequency volatility estimators based on open, high, low, and close daily prices. Our data sample consists of 18 stock market indices. We find that high-frequency volatility models tend to outperform low-frequency volatility models only for short-term forecasts. As the forecast horizon increases (up to one month), the difference in forecast accuracy becomes statistically indistinguishable for most market indices. To evaluate the practical implications of our results, we study a simple asset allocation problem. The results reveal that asset allocation based on high-frequency volatility model forecasts does not outperform asset allocation based on low-frequency volatility model forecasts.
Název v anglickém jazyce
Stock market volatility forecasting: Do we need high-frequency data?
Popis výsledku anglicky
The general consensus in the volatility forecasting literature is that high-frequency volatility models outperform low-frequency volatility models. However, such a conclusion is reached when low-frequency volatility models are estimated from daily returns. Instead, we study this question considering daily, low-frequency volatility estimators based on open, high, low, and close daily prices. Our data sample consists of 18 stock market indices. We find that high-frequency volatility models tend to outperform low-frequency volatility models only for short-term forecasts. As the forecast horizon increases (up to one month), the difference in forecast accuracy becomes statistically indistinguishable for most market indices. To evaluate the practical implications of our results, we study a simple asset allocation problem. The results reveal that asset allocation based on high-frequency volatility model forecasts does not outperform asset allocation based on low-frequency volatility model forecasts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-05829S" target="_blank" >GA18-05829S: Predikce volatility na rozvijících se finančních trzích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Forecasting
ISSN
0169-2070
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
1092-1110
Kód UT WoS článku
000656489100006
EID výsledku v databázi Scopus
2-s2.0-85098665343