Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predicting risk in energy markets: Low-frequency data still matter

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F21%3A00119318" target="_blank" >RIV/00216224:14560/21:00119318 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0306261920315567#" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0306261920315567#</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apenergy.2020.116146" target="_blank" >10.1016/j.apenergy.2020.116146</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predicting risk in energy markets: Low-frequency data still matter

  • Popis výsledku v původním jazyce

    Are high-frequency data always needed to generate precise forecasts of risk measures in energy markets? This study attempts to shed light on this question. We study whether energy market participants can rely on low-frequency volatility estimators when interested in two market risks: volatility and expected shortfall. Using ten years of data on four of the world’s most liquid energy futures contracts – the crude oil benchmarks West Texas Intermediate and Brent, as well as natural gas and heating oil futures – we provide conclusive evidence that while realized volatility models lead to much more accurate forecasts in the short term, medium- and longer-term forecasts based on daily ranges are comparable and, in some cases, even more accurate than their high-frequency counterparts that are computationally more intensive and that require costly data. Next, we present an application to predict extreme price declines - expected shortfall - with low-frequency volatility estimates. For that purpose, we propose a novel complete subset quantile regression model to predict multiple-day-ahead expected shortfall . Our back-testing results show that the new model leads to well-specified price decline forecasts, particularly when used with low-frequency volatility estimates. These results show that depending on the forecast horizon and purpose, low-frequency, publicly available, free of cost and easy to process volatility estimators still matter.

  • Název v anglickém jazyce

    Predicting risk in energy markets: Low-frequency data still matter

  • Popis výsledku anglicky

    Are high-frequency data always needed to generate precise forecasts of risk measures in energy markets? This study attempts to shed light on this question. We study whether energy market participants can rely on low-frequency volatility estimators when interested in two market risks: volatility and expected shortfall. Using ten years of data on four of the world’s most liquid energy futures contracts – the crude oil benchmarks West Texas Intermediate and Brent, as well as natural gas and heating oil futures – we provide conclusive evidence that while realized volatility models lead to much more accurate forecasts in the short term, medium- and longer-term forecasts based on daily ranges are comparable and, in some cases, even more accurate than their high-frequency counterparts that are computationally more intensive and that require costly data. Next, we present an application to predict extreme price declines - expected shortfall - with low-frequency volatility estimates. For that purpose, we propose a novel complete subset quantile regression model to predict multiple-day-ahead expected shortfall . Our back-testing results show that the new model leads to well-specified price decline forecasts, particularly when used with low-frequency volatility estimates. These results show that depending on the forecast horizon and purpose, low-frequency, publicly available, free of cost and easy to process volatility estimators still matter.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50206 - Finance

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-05829S" target="_blank" >GA18-05829S: Predikce volatility na rozvijících se finančních trzích</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Energy

  • ISSN

    0306-2619

  • e-ISSN

    1872-9118

  • Svazek periodika

    282

  • Číslo periodika v rámci svazku

    Part A

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Kód UT WoS článku

    000599659800003

  • EID výsledku v databázi Scopus

    2-s2.0-85096475837