Context-Tailored Workload Model Generation for Continuous Representative Load Testing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438391" target="_blank" >RIV/00216208:11320/21:10438391 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3427921.3450240" target="_blank" >https://doi.org/10.1145/3427921.3450240</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3427921.3450240" target="_blank" >10.1145/3427921.3450240</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Context-Tailored Workload Model Generation for Continuous Representative Load Testing
Popis výsledku v původním jazyce
Load tests evaluate software quality attributes, such as performance and reliability, by e.g., emulating user behavior that is representative of the production workload. Existing approaches extract workload models from recorded user requests. However, a single workload model cannot reflect the complex and evolving workload of today's applications, or take into account workload-influencing contexts, such as special offers, incidents, or weather conditions. In this paper, we propose an integrated framework for generating load tests tailored to the context of interest, which a user can describe in a language we provide. The framework applies multivariate time series forecasting for extracting a context-tailored load test from an initial workload model, which is incrementally learned by clustering user sessions recorded in production and enriched with relevant context information. We evaluated our approach with the workload of a student information system. Our results show that incrementally learned workload models can be used for generating tailored load tests. The description language is able to express the relevant contexts, which, in turn, improve the representativeness of the load tests. We have also found that the existing workload characterization concepts and forecasting tools used are limited in regard to strong workload fluctuations, which needs to be tackled in future work.
Název v anglickém jazyce
Context-Tailored Workload Model Generation for Continuous Representative Load Testing
Popis výsledku anglicky
Load tests evaluate software quality attributes, such as performance and reliability, by e.g., emulating user behavior that is representative of the production workload. Existing approaches extract workload models from recorded user requests. However, a single workload model cannot reflect the complex and evolving workload of today's applications, or take into account workload-influencing contexts, such as special offers, incidents, or weather conditions. In this paper, we propose an integrated framework for generating load tests tailored to the context of interest, which a user can describe in a language we provide. The framework applies multivariate time series forecasting for extracting a context-tailored load test from an initial workload model, which is incrementally learned by clustering user sessions recorded in production and enriched with relevant context information. We evaluated our approach with the workload of a student information system. Our results show that incrementally learned workload models can be used for generating tailored load tests. The description language is able to express the relevant contexts, which, in turn, improve the representativeness of the load tests. We have also found that the existing workload characterization concepts and forecasting tools used are limited in regard to strong workload fluctuations, which needs to be tackled in future work.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICPE '21: Proceedings of the ACM/SPEC International Conference on Performance Engineering
ISBN
978-1-4503-8194-9
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
21-32
Název nakladatele
ACM
Místo vydání
USA
Místo konání akce
virtuální
Datum konání akce
19. 4. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000744413800003