Subexponential-Time Algorithms for Finding Large Induced Sparse Subgraphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438400" target="_blank" >RIV/00216208:11320/21:10438400 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=20H12foL0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=20H12foL0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-020-00745-z" target="_blank" >10.1007/s00453-020-00745-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Subexponential-Time Algorithms for Finding Large Induced Sparse Subgraphs
Popis výsledku v původním jazyce
Let C and D be hereditary graph classes. Consider the following problem: given a graph GELEMENT OF D, find a largest, in terms of the number of vertices, induced subgraph of G that belongs to C. We prove that it can be solved in 2 o(n) time, where n is the number of vertices of G, if the following conditions are satisfied:the graphs in C are sparse, i.e., they have linearly many edges in terms of the number of vertices;the graphs in D admit balanced separators of size governed by their density, e.g., O(Δ) or O(m), where Δ and m denote the maximum degree and the number of edges, respectively; andthe considered problem admits a single-exponential fixed-parameter algorithm when parameterized by the treewidth of the input graph. This leads, for example, to the following corollaries for specific classes C and D:a largest induced forest in a Pt-free graph can be found in 2O~(n2/3) time, for every fixed t; anda largest induced planar graph in a string graph can be found in 2O~(n2/3) time.
Název v anglickém jazyce
Subexponential-Time Algorithms for Finding Large Induced Sparse Subgraphs
Popis výsledku anglicky
Let C and D be hereditary graph classes. Consider the following problem: given a graph GELEMENT OF D, find a largest, in terms of the number of vertices, induced subgraph of G that belongs to C. We prove that it can be solved in 2 o(n) time, where n is the number of vertices of G, if the following conditions are satisfied:the graphs in C are sparse, i.e., they have linearly many edges in terms of the number of vertices;the graphs in D admit balanced separators of size governed by their density, e.g., O(Δ) or O(m), where Δ and m denote the maximum degree and the number of edges, respectively; andthe considered problem admits a single-exponential fixed-parameter algorithm when parameterized by the treewidth of the input graph. This leads, for example, to the following corollaries for specific classes C and D:a largest induced forest in a Pt-free graph can be found in 2O~(n2/3) time, for every fixed t; anda largest induced planar graph in a string graph can be found in 2O~(n2/3) time.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algorithmica
ISSN
0178-4617
e-ISSN
—
Svazek periodika
83
Číslo periodika v rámci svazku
srpen
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
2634-2650
Kód UT WoS článku
000554348200001
EID výsledku v databázi Scopus
2-s2.0-85088961027