Minimal Taylor Algebras as a Common Framework for the Three Algebraic Approaches to the CSP
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438452" target="_blank" >RIV/00216208:11320/21:10438452 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/LICS52264.2021.9470557" target="_blank" >https://doi.org/10.1109/LICS52264.2021.9470557</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LICS52264.2021.9470557" target="_blank" >10.1109/LICS52264.2021.9470557</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Minimal Taylor Algebras as a Common Framework for the Three Algebraic Approaches to the CSP
Popis výsledku v původním jazyce
This paper focuses on the algebraic theory underlying the study of the complexity and the algorithms for the Constraint Satisfaction Problem (CSP). We unify, simplify, and extend parts of the three approaches that have been developed to study the CSP over finite templates - absorption theory that was used to characterize CSPs solvable by local consistency methods (JACM'14), and Bulatov's and Zhuk's theories that were used for two independent proofs of the CSP Dichotomy Theorem (FOCS'17, JACM'20). As the first contribution we present an elementary theorem about primitive positive definability and use it to obtain the starting points of Bulatov's and Zhuk's proofs as corollaries. As the second contribution we propose and initiate a systematic study of minimal Taylor algebras. This class of algebras is broad enough so that it suffices to verify the CSP Dichotomy Theorem on this class only, but still is unusually well behaved. In particular, many concepts from the three approaches coincide in the class, which is in striking contrast with the general setting. We believe that the theory initiated in this paper will eventually result in a simple and more natural proof of the Dichotomy Theorem that employs a simpler and more efficient algorithm, and will help in attacking complexity questions in other CSP-related problems.
Název v anglickém jazyce
Minimal Taylor Algebras as a Common Framework for the Three Algebraic Approaches to the CSP
Popis výsledku anglicky
This paper focuses on the algebraic theory underlying the study of the complexity and the algorithms for the Constraint Satisfaction Problem (CSP). We unify, simplify, and extend parts of the three approaches that have been developed to study the CSP over finite templates - absorption theory that was used to characterize CSPs solvable by local consistency methods (JACM'14), and Bulatov's and Zhuk's theories that were used for two independent proofs of the CSP Dichotomy Theorem (FOCS'17, JACM'20). As the first contribution we present an elementary theorem about primitive positive definability and use it to obtain the starting points of Bulatov's and Zhuk's proofs as corollaries. As the second contribution we propose and initiate a systematic study of minimal Taylor algebras. This class of algebras is broad enough so that it suffices to verify the CSP Dichotomy Theorem on this class only, but still is unusually well behaved. In particular, many concepts from the three approaches coincide in the class, which is in striking contrast with the general setting. We believe that the theory initiated in this paper will eventually result in a simple and more natural proof of the Dichotomy Theorem that employs a simpler and more efficient algorithm, and will help in attacking complexity questions in other CSP-related problems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - Symposium on Logic in Computer Science
ISBN
978-1-66544-895-6
ISSN
1043-6871
e-ISSN
—
Počet stran výsledku
13
Strana od-do
1-13
Název nakladatele
The Institute of Electrical and Electronics Engineers (IEEE)
Místo vydání
Itálie
Místo konání akce
Itálie
Datum konání akce
29. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—