Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Minimal Taylor Algebras as a Common Framework for the Three Algebraic Approaches to the CSP

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438452" target="_blank" >RIV/00216208:11320/21:10438452 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/LICS52264.2021.9470557" target="_blank" >https://doi.org/10.1109/LICS52264.2021.9470557</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LICS52264.2021.9470557" target="_blank" >10.1109/LICS52264.2021.9470557</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Minimal Taylor Algebras as a Common Framework for the Three Algebraic Approaches to the CSP

  • Popis výsledku v původním jazyce

    This paper focuses on the algebraic theory underlying the study of the complexity and the algorithms for the Constraint Satisfaction Problem (CSP). We unify, simplify, and extend parts of the three approaches that have been developed to study the CSP over finite templates - absorption theory that was used to characterize CSPs solvable by local consistency methods (JACM&apos;14), and Bulatov&apos;s and Zhuk&apos;s theories that were used for two independent proofs of the CSP Dichotomy Theorem (FOCS&apos;17, JACM&apos;20). As the first contribution we present an elementary theorem about primitive positive definability and use it to obtain the starting points of Bulatov&apos;s and Zhuk&apos;s proofs as corollaries. As the second contribution we propose and initiate a systematic study of minimal Taylor algebras. This class of algebras is broad enough so that it suffices to verify the CSP Dichotomy Theorem on this class only, but still is unusually well behaved. In particular, many concepts from the three approaches coincide in the class, which is in striking contrast with the general setting. We believe that the theory initiated in this paper will eventually result in a simple and more natural proof of the Dichotomy Theorem that employs a simpler and more efficient algorithm, and will help in attacking complexity questions in other CSP-related problems.

  • Název v anglickém jazyce

    Minimal Taylor Algebras as a Common Framework for the Three Algebraic Approaches to the CSP

  • Popis výsledku anglicky

    This paper focuses on the algebraic theory underlying the study of the complexity and the algorithms for the Constraint Satisfaction Problem (CSP). We unify, simplify, and extend parts of the three approaches that have been developed to study the CSP over finite templates - absorption theory that was used to characterize CSPs solvable by local consistency methods (JACM&apos;14), and Bulatov&apos;s and Zhuk&apos;s theories that were used for two independent proofs of the CSP Dichotomy Theorem (FOCS&apos;17, JACM&apos;20). As the first contribution we present an elementary theorem about primitive positive definability and use it to obtain the starting points of Bulatov&apos;s and Zhuk&apos;s proofs as corollaries. As the second contribution we propose and initiate a systematic study of minimal Taylor algebras. This class of algebras is broad enough so that it suffices to verify the CSP Dichotomy Theorem on this class only, but still is unusually well behaved. In particular, many concepts from the three approaches coincide in the class, which is in striking contrast with the general setting. We believe that the theory initiated in this paper will eventually result in a simple and more natural proof of the Dichotomy Theorem that employs a simpler and more efficient algorithm, and will help in attacking complexity questions in other CSP-related problems.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings - Symposium on Logic in Computer Science

  • ISBN

    978-1-66544-895-6

  • ISSN

    1043-6871

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Název nakladatele

    The Institute of Electrical and Electronics Engineers (IEEE)

  • Místo vydání

    Itálie

  • Místo konání akce

    Itálie

  • Datum konání akce

    29. 6. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku