Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

H-colouring dichotomy in proof complexity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437362" target="_blank" >RIV/00216208:11320/21:10437362 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j6FeGlE1dk" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j6FeGlE1dk</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/logcom/exab028" target="_blank" >10.1093/logcom/exab028</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    H-colouring dichotomy in proof complexity

  • Popis výsledku v původním jazyce

    The H-colouring problem for undirected simple graphs is a computational problem from a huge class of the constraint satisfaction problems (CSPs): an H-colouring of a graph G is just a homomorphism from G to H and the problem is to decide for fixed H, given G, if a homomorphism exists or not. The dichotomy theorem for the H-colouring problem was proved by Hell and Nesetril (1990, J Comb. Theory Ser. B, 48, 92-110) (an analogous theorem for all CSPs was recently proved by Zhuk (2020, J. ACM, 67, 1-78) and Bulatov (2017, FOCS, 58, 319-330)), and it says that for each H, the problem is either p-time decidable or NP-complete. Since negations of unsatisfiable instances of CSP can be expressed as propositional tautologies, it seems to be natural to investigate the proof complexity of CSP. We show that the decision algorithm in the p-time case of the H-colouring problem can be formalized in a relatively weak theory and that the tautologies expressing the negative instances for such H have polynomial proofs in propositional proof system R* (log), a mild extension of resolution. In fact, when the formulas are expressed as unsatisfiable sets of clauses, they have p-size resolution proofs. To establish this, we use a well-known connection between theories of bounded arithmetic and propositional proof systems. This upper bound follows also from a different construction in [1]. We complement this result by a lower bound result that holds for many weak proof systems for a special example of NP-complete case of the H-colouring problem, using known results about the proof complexity of the pigeonhole principle. The main goal of our work is to start the development of some of the theories beyond the CSP dichotomy theorem in bounded arithmetic. We aim eventually in a subsequent work to formalize in such a theory the soundness of Zhuk&apos;s algorithm, extending the upper bound proved here from undirected simple graphs to the general case of directed graphs in some logical calculi.

  • Název v anglickém jazyce

    H-colouring dichotomy in proof complexity

  • Popis výsledku anglicky

    The H-colouring problem for undirected simple graphs is a computational problem from a huge class of the constraint satisfaction problems (CSPs): an H-colouring of a graph G is just a homomorphism from G to H and the problem is to decide for fixed H, given G, if a homomorphism exists or not. The dichotomy theorem for the H-colouring problem was proved by Hell and Nesetril (1990, J Comb. Theory Ser. B, 48, 92-110) (an analogous theorem for all CSPs was recently proved by Zhuk (2020, J. ACM, 67, 1-78) and Bulatov (2017, FOCS, 58, 319-330)), and it says that for each H, the problem is either p-time decidable or NP-complete. Since negations of unsatisfiable instances of CSP can be expressed as propositional tautologies, it seems to be natural to investigate the proof complexity of CSP. We show that the decision algorithm in the p-time case of the H-colouring problem can be formalized in a relatively weak theory and that the tautologies expressing the negative instances for such H have polynomial proofs in propositional proof system R* (log), a mild extension of resolution. In fact, when the formulas are expressed as unsatisfiable sets of clauses, they have p-size resolution proofs. To establish this, we use a well-known connection between theories of bounded arithmetic and propositional proof systems. This upper bound follows also from a different construction in [1]. We complement this result by a lower bound result that holds for many weak proof systems for a special example of NP-complete case of the H-colouring problem, using known results about the proof complexity of the pigeonhole principle. The main goal of our work is to start the development of some of the theories beyond the CSP dichotomy theorem in bounded arithmetic. We aim eventually in a subsequent work to formalize in such a theory the soundness of Zhuk&apos;s algorithm, extending the upper bound proved here from undirected simple graphs to the general case of directed graphs in some logical calculi.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Logic and Computation

  • ISSN

    0955-792X

  • e-ISSN

  • Svazek periodika

    2021

  • Číslo periodika v rámci svazku

    31

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    20

  • Strana od-do

    1206-1225

  • Kód UT WoS článku

    000687199700002

  • EID výsledku v databázi Scopus

    2-s2.0-85113772399