Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Min Orderings and List Homomorphism Dichotomies for Signed and Unsigned Graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10451828" target="_blank" >RIV/00216208:11320/22:10451828 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-20624-5_31" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-20624-5_31</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-20624-5_31" target="_blank" >10.1007/978-3-031-20624-5_31</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Min Orderings and List Homomorphism Dichotomies for Signed and Unsigned Graphs

  • Popis výsledku v původním jazyce

    The CSP dichotomy conjecture has been recently established, but a number of other dichotomy questions remain open, including the dichotomy classification of list homomorphism problems for signed graphs. Signed graphs arise naturally in many contexts, including for instance nowhere-zero flows for graphs embedded in non-orientable surfaces. For a fixed signed graph ????^H^, the list homomorphism problem asks whether an input signed graph ????^G^ with lists ????(????)SUBSET OF OR EQUAL TO  ????(????^),????ELEMENT OF????(????^),L(v)SUBSET OF OR EQUAL TOV(H^),vELEMENT OFV(G^), admits a homomorphism f to ????^H^ with all ????(????)ELEMENT OF????(????),????ELEMENT OF????(????^)f(v)ELEMENT OFL(v),vELEMENT OFV(G^).Usually, a dichotomy classification is easier to obtain for list homomorphisms than for homomorphisms, but in the context of signed graphs a structural classification of the complexity of list homomorphism problems has not even been conjectured, even though the classification of the complexity of homomorphism problems is known.Kim and Siggers have conjectured a structural classification in the special case of &quot;weakly balanced&quot; signed graphs. We confirm their conjecture for reflexive and irreflexive signed graphs; this generalizes previous results on weakly balanced signed trees, and weakly balanced separable signed graphs [1,2,3]. In the reflexive case, the result was first presented in [19], where the proof relies on a result in this paper. The irreflexive result is new, and its proof depends on first deriving a theorem on extensions of min orderings of (unsigned) bipartite graphs, which is interesting on its own.

  • Název v anglickém jazyce

    Min Orderings and List Homomorphism Dichotomies for Signed and Unsigned Graphs

  • Popis výsledku anglicky

    The CSP dichotomy conjecture has been recently established, but a number of other dichotomy questions remain open, including the dichotomy classification of list homomorphism problems for signed graphs. Signed graphs arise naturally in many contexts, including for instance nowhere-zero flows for graphs embedded in non-orientable surfaces. For a fixed signed graph ????^H^, the list homomorphism problem asks whether an input signed graph ????^G^ with lists ????(????)SUBSET OF OR EQUAL TO  ????(????^),????ELEMENT OF????(????^),L(v)SUBSET OF OR EQUAL TOV(H^),vELEMENT OFV(G^), admits a homomorphism f to ????^H^ with all ????(????)ELEMENT OF????(????),????ELEMENT OF????(????^)f(v)ELEMENT OFL(v),vELEMENT OFV(G^).Usually, a dichotomy classification is easier to obtain for list homomorphisms than for homomorphisms, but in the context of signed graphs a structural classification of the complexity of list homomorphism problems has not even been conjectured, even though the classification of the complexity of homomorphism problems is known.Kim and Siggers have conjectured a structural classification in the special case of &quot;weakly balanced&quot; signed graphs. We confirm their conjecture for reflexive and irreflexive signed graphs; this generalizes previous results on weakly balanced signed trees, and weakly balanced separable signed graphs [1,2,3]. In the reflexive case, the result was first presented in [19], where the proof relies on a result in this paper. The irreflexive result is new, and its proof depends on first deriving a theorem on extensions of min orderings of (unsigned) bipartite graphs, which is interesting on its own.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science, vol 13568

  • ISBN

    978-3-031-20623-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    17

  • Strana od-do

    510-526

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Guanajuato, Mexico

  • Datum konání akce

    7. 11. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku