Min Orderings and List Homomorphism Dichotomies for Signed and Unsigned Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10451828" target="_blank" >RIV/00216208:11320/22:10451828 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-20624-5_31" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-20624-5_31</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-20624-5_31" target="_blank" >10.1007/978-3-031-20624-5_31</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Min Orderings and List Homomorphism Dichotomies for Signed and Unsigned Graphs
Popis výsledku v původním jazyce
The CSP dichotomy conjecture has been recently established, but a number of other dichotomy questions remain open, including the dichotomy classification of list homomorphism problems for signed graphs. Signed graphs arise naturally in many contexts, including for instance nowhere-zero flows for graphs embedded in non-orientable surfaces. For a fixed signed graph ????^H^, the list homomorphism problem asks whether an input signed graph ????^G^ with lists ????(????)SUBSET OF OR EQUAL TO ????(????^),????ELEMENT OF????(????^),L(v)SUBSET OF OR EQUAL TOV(H^),vELEMENT OFV(G^), admits a homomorphism f to ????^H^ with all ????(????)ELEMENT OF????(????),????ELEMENT OF????(????^)f(v)ELEMENT OFL(v),vELEMENT OFV(G^).Usually, a dichotomy classification is easier to obtain for list homomorphisms than for homomorphisms, but in the context of signed graphs a structural classification of the complexity of list homomorphism problems has not even been conjectured, even though the classification of the complexity of homomorphism problems is known.Kim and Siggers have conjectured a structural classification in the special case of "weakly balanced" signed graphs. We confirm their conjecture for reflexive and irreflexive signed graphs; this generalizes previous results on weakly balanced signed trees, and weakly balanced separable signed graphs [1,2,3]. In the reflexive case, the result was first presented in [19], where the proof relies on a result in this paper. The irreflexive result is new, and its proof depends on first deriving a theorem on extensions of min orderings of (unsigned) bipartite graphs, which is interesting on its own.
Název v anglickém jazyce
Min Orderings and List Homomorphism Dichotomies for Signed and Unsigned Graphs
Popis výsledku anglicky
The CSP dichotomy conjecture has been recently established, but a number of other dichotomy questions remain open, including the dichotomy classification of list homomorphism problems for signed graphs. Signed graphs arise naturally in many contexts, including for instance nowhere-zero flows for graphs embedded in non-orientable surfaces. For a fixed signed graph ????^H^, the list homomorphism problem asks whether an input signed graph ????^G^ with lists ????(????)SUBSET OF OR EQUAL TO ????(????^),????ELEMENT OF????(????^),L(v)SUBSET OF OR EQUAL TOV(H^),vELEMENT OFV(G^), admits a homomorphism f to ????^H^ with all ????(????)ELEMENT OF????(????),????ELEMENT OF????(????^)f(v)ELEMENT OFL(v),vELEMENT OFV(G^).Usually, a dichotomy classification is easier to obtain for list homomorphisms than for homomorphisms, but in the context of signed graphs a structural classification of the complexity of list homomorphism problems has not even been conjectured, even though the classification of the complexity of homomorphism problems is known.Kim and Siggers have conjectured a structural classification in the special case of "weakly balanced" signed graphs. We confirm their conjecture for reflexive and irreflexive signed graphs; this generalizes previous results on weakly balanced signed trees, and weakly balanced separable signed graphs [1,2,3]. In the reflexive case, the result was first presented in [19], where the proof relies on a result in this paper. The irreflexive result is new, and its proof depends on first deriving a theorem on extensions of min orderings of (unsigned) bipartite graphs, which is interesting on its own.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science, vol 13568
ISBN
978-3-031-20623-8
ISSN
—
e-ISSN
—
Počet stran výsledku
17
Strana od-do
510-526
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Guanajuato, Mexico
Datum konání akce
7. 11. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—