List Homomorphism Problems for Signed Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422005" target="_blank" >RIV/00216208:11320/20:10422005 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.MFCS.2020.20" target="_blank" >https://doi.org/10.4230/LIPIcs.MFCS.2020.20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2020.20" target="_blank" >10.4230/LIPIcs.MFCS.2020.20</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
List Homomorphism Problems for Signed Graphs
Popis výsledku v původním jazyce
We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph (G,σ), equipped with lists L(v) SUBSET OF OR EQUAL TO V(H), v ELEMENT OF V(G), of allowed images, to a fixed target signed graph (H,π). The complexity of the similar homomorphism problem without lists (corresponding to all lists being L(v) = V(H)) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. Both versions (with lists or without lists) can be formulated as constraint satisfaction problems, and hence enjoy the algebraic dichotomy classification recently verified by Bulatov and Zhuk. By contrast, we seek a combinatorial classification for the list version, akin to the combinatorial classification for the version without lists completed by Brewster and Siggers. We illustrate the possible complications by classifying the complexity of the list homomorphism problem when H is a (reflexive or irreflexive) signed tree. It turns out that the problems are polynomial-time solvable for certain caterpillar-like trees, and are NP-complete otherwise. The tools we develop will be useful for classifications of other classes of signed graphs, and we mention some follow-up research of this kind; those classifications are surprisingly complex.
Název v anglickém jazyce
List Homomorphism Problems for Signed Graphs
Popis výsledku anglicky
We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph (G,σ), equipped with lists L(v) SUBSET OF OR EQUAL TO V(H), v ELEMENT OF V(G), of allowed images, to a fixed target signed graph (H,π). The complexity of the similar homomorphism problem without lists (corresponding to all lists being L(v) = V(H)) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. Both versions (with lists or without lists) can be formulated as constraint satisfaction problems, and hence enjoy the algebraic dichotomy classification recently verified by Bulatov and Zhuk. By contrast, we seek a combinatorial classification for the list version, akin to the combinatorial classification for the version without lists completed by Brewster and Siggers. We illustrate the possible complications by classifying the complexity of the list homomorphism problem when H is a (reflexive or irreflexive) signed tree. It turns out that the problems are polynomial-time solvable for certain caterpillar-like trees, and are NP-complete otherwise. The tools we develop will be useful for classifications of other classes of signed graphs, and we mention some follow-up research of this kind; those classifications are surprisingly complex.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)
ISBN
978-3-95977-159-7
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
14
Strana od-do
1-14
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum f{"u}r Informatik
Místo vydání
Dagsthul, Německo
Místo konání akce
online
Datum konání akce
24. 8. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—