List homomorphism problems for signed trees
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10453413" target="_blank" >RIV/00216208:11320/23:10453413 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=oRw9YxwlpE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=oRw9YxwlpE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2022.113257" target="_blank" >10.1016/j.disc.2022.113257</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
List homomorphism problems for signed trees
Popis výsledku v původním jazyce
We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph (G,σ), equipped with lists L(v),v in V(G), of allowed images, to a fixed target signed graph (H,π). The complexity of the similar homomorphism problem without lists (corresponding to all lists being L(v)=V(H)) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. We illustrate this difficulty by classifying the complexity of the problem when H is a tree (with possible loops). The tools we develop will be useful for classifications of other classes of signed graphs, and in a future companion paper we will illustrate this by using them to classify the complexity for certain irreflexive signed graphs. The structure of the signed trees in the polynomial cases is interesting, suggesting that the class of general signed graphs for which the problems are polynomial may have nice structure, analogous to the so-called bi-arc graphs (which characterised the polynomial cases of list homomorphisms to unsigned graphs).
Název v anglickém jazyce
List homomorphism problems for signed trees
Popis výsledku anglicky
We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph (G,σ), equipped with lists L(v),v in V(G), of allowed images, to a fixed target signed graph (H,π). The complexity of the similar homomorphism problem without lists (corresponding to all lists being L(v)=V(H)) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. We illustrate this difficulty by classifying the complexity of the problem when H is a tree (with possible loops). The tools we develop will be useful for classifications of other classes of signed graphs, and in a future companion paper we will illustrate this by using them to classify the complexity for certain irreflexive signed graphs. The structure of the signed trees in the polynomial cases is interesting, suggesting that the class of general signed graphs for which the problems are polynomial may have nice structure, analogous to the so-called bi-arc graphs (which characterised the polynomial cases of list homomorphisms to unsigned graphs).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC19-17314J" target="_blank" >GC19-17314J: Geometrické reprezentace grafů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Svazek periodika
346
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
113257
Kód UT WoS článku
000993162200001
EID výsledku v databázi Scopus
2-s2.0-85145561746