List Locally Surjective Homomorphisms in Hereditary Graph Classes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453198" target="_blank" >RIV/00216208:11320/22:10453198 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.ISAAC.2022.30" target="_blank" >https://doi.org/10.4230/LIPIcs.ISAAC.2022.30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ISAAC.2022.30" target="_blank" >10.4230/LIPIcs.ISAAC.2022.30</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
List Locally Surjective Homomorphisms in Hereditary Graph Classes
Popis výsledku v původním jazyce
A locally surjective homomorphism from a graph G to a graph H is an edge-preserving mapping from V (G) to V (H) that is surjective in the neighborhood of each vertex in G. In the list locally surjective homomorphism problem, denoted by LLSHom(H), the graph H is fixed and the instance consists of a graph G whose every vertex is equipped with a subset of V (H), called list. We ask for the existence of a locally surjective homomorphism from G to H, where every vertex of G is mapped to a vertex from its list. In this paper, we study the complexity of the LLSHom(H) problem in F-free graphs, i.e., graphs that exclude a fixed graph F as an induced subgraph. We aim to understand for which pairs (H, F) the problem can be solved in subexponential time. We show that for all graphs H, for which the problem is NP-hard in general graphs, it cannot be solved in subexponential time in F-free graphs for F being a bounded-degree forest, unless the ETH fails. The initial study reveals that a natural subfamily of bounded-degree forests F, that might lead to some tractability results, is the family S consisting of forests whose every component has at most three leaves. In this case, we exhibit the following dichotomy theorem: besides the cases that are polynomial-time solvable in general graphs, the graphs H in {P3, C4} are the only connected ones that allow for a subexponential-time algorithm in F-free graphs for every F in S (unless the ETH fails).
Název v anglickém jazyce
List Locally Surjective Homomorphisms in Hereditary Graph Classes
Popis výsledku anglicky
A locally surjective homomorphism from a graph G to a graph H is an edge-preserving mapping from V (G) to V (H) that is surjective in the neighborhood of each vertex in G. In the list locally surjective homomorphism problem, denoted by LLSHom(H), the graph H is fixed and the instance consists of a graph G whose every vertex is equipped with a subset of V (H), called list. We ask for the existence of a locally surjective homomorphism from G to H, where every vertex of G is mapped to a vertex from its list. In this paper, we study the complexity of the LLSHom(H) problem in F-free graphs, i.e., graphs that exclude a fixed graph F as an induced subgraph. We aim to understand for which pairs (H, F) the problem can be solved in subexponential time. We show that for all graphs H, for which the problem is NP-hard in general graphs, it cannot be solved in subexponential time in F-free graphs for F being a bounded-degree forest, unless the ETH fails. The initial study reveals that a natural subfamily of bounded-degree forests F, that might lead to some tractability results, is the family S consisting of forests whose every component has at most three leaves. In this case, we exhibit the following dichotomy theorem: besides the cases that are polynomial-time solvable in general graphs, the graphs H in {P3, C4} are the only connected ones that allow for a subexponential-time algorithm in F-free graphs for every F in S (unless the ETH fails).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GN22-14872O" target="_blank" >GN22-14872O: Kombinatorické metody v teorii informace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
33rd International Symposium on Algorithms and Computation (ISAAC 2022)
ISBN
978-3-95977-258-7
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
15
Strana od-do
1-15
Název nakladatele
Schloss Dagstuhl -- Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl
Místo konání akce
Seoul, Korea
Datum konání akce
19. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—