Parameterized complexity of edge-coloured and signed graph homomorphism problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00118539" target="_blank" >RIV/00216224:14330/19:00118539 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2019.15" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.IPEC.2019.15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2019.15" target="_blank" >10.4230/LIPIcs.IPEC.2019.15</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameterized complexity of edge-coloured and signed graph homomorphism problems
Popis výsledku v původním jazyce
We study the complexity of graph modification problems with respect to homomorphism-based colouring properties of edge-coloured graphs. A homomorphism from an edge-coloured graph G to an edge-coloured graph H is a vertex-mapping from G to H that preserves adjacencies and edge-colours. We consider the property of having a homomorphism to a fixed edge-coloured graph H, which generalises the classic vertex-colourability property. The question we are interested in is the following: given an edge-coloured graph G, can we perform k graph operations so that the resulting graph admits a homomorphism to H? The operations we consider are vertex-deletion, edge-deletion and switching (an operation that permutes the colours of the edges incident to a given vertex). Switching plays an important role in the theory of signed graphs, that are 2-edge-coloured graphs whose colours are the signs + and -. We denote the corresponding problems (parameterized by k) by Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-H-Colouring. These problems generalise the extensively studied H-Colouring problem (where one has to decide if an input graph admits a homomorphism to a fixed target H). For 2-edge-coloured H, it is known that H-Colouring already captures the complexity of all fixed-target Constraint Satisfaction Problems. Our main focus is on the case where H is an edge-coloured graph of order at most 2, a case that is already interesting since it includes standard problems such as Vertex Cover, Odd Cycle Transversal and Edge Bipartization. For such a graph H, we give a PTime/NP-complete complexity dichotomy for all three Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-H-Colouring problems. Then, we address their parameterized complexity. We show that all Vertex Deletion-H-Colouring and Edge Deletion-H-Colouring problems for such H are FPT. This is in contrast with the fact that already for some H of order 3, unless PTime = NP, none of the three considered problems is in XP, since 3-Colouring is NP-complete. We show that the situation is different for Switching-H-Colouring: there are three 2-edge-coloured graphs H of order 2 for which Switching-H-Colouring is W[1]-hard, and assuming the ETH, admits no algorithm in time f(k)n^{o(k)} for inputs of size n and for any computable function f. For the other cases, Switching-H-Colouring is FPT.
Název v anglickém jazyce
Parameterized complexity of edge-coloured and signed graph homomorphism problems
Popis výsledku anglicky
We study the complexity of graph modification problems with respect to homomorphism-based colouring properties of edge-coloured graphs. A homomorphism from an edge-coloured graph G to an edge-coloured graph H is a vertex-mapping from G to H that preserves adjacencies and edge-colours. We consider the property of having a homomorphism to a fixed edge-coloured graph H, which generalises the classic vertex-colourability property. The question we are interested in is the following: given an edge-coloured graph G, can we perform k graph operations so that the resulting graph admits a homomorphism to H? The operations we consider are vertex-deletion, edge-deletion and switching (an operation that permutes the colours of the edges incident to a given vertex). Switching plays an important role in the theory of signed graphs, that are 2-edge-coloured graphs whose colours are the signs + and -. We denote the corresponding problems (parameterized by k) by Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-H-Colouring. These problems generalise the extensively studied H-Colouring problem (where one has to decide if an input graph admits a homomorphism to a fixed target H). For 2-edge-coloured H, it is known that H-Colouring already captures the complexity of all fixed-target Constraint Satisfaction Problems. Our main focus is on the case where H is an edge-coloured graph of order at most 2, a case that is already interesting since it includes standard problems such as Vertex Cover, Odd Cycle Transversal and Edge Bipartization. For such a graph H, we give a PTime/NP-complete complexity dichotomy for all three Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-H-Colouring problems. Then, we address their parameterized complexity. We show that all Vertex Deletion-H-Colouring and Edge Deletion-H-Colouring problems for such H are FPT. This is in contrast with the fact that already for some H of order 3, unless PTime = NP, none of the three considered problems is in XP, since 3-Colouring is NP-complete. We show that the situation is different for Switching-H-Colouring: there are three 2-edge-coloured graphs H of order 2 for which Switching-H-Colouring is W[1]-hard, and assuming the ETH, admits no algorithm in time f(k)n^{o(k)} for inputs of size n and for any computable function f. For the other cases, Switching-H-Colouring is FPT.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
14th International Symposium on Parameterized and Exact Computation (IPEC 2019)
ISBN
9783959771290
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
16
Strana od-do
„15:1“-„15:16“
Název nakladatele
Dagstuhl
Místo vydání
Munich
Místo konání akce
Munich
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—