Graph Isomorphism Restricted by Lists
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00343649" target="_blank" >RIV/68407700:21240/20:00343649 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-60440-0_9" target="_blank" >https://doi.org/10.1007/978-3-030-60440-0_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-60440-0_9" target="_blank" >10.1007/978-3-030-60440-0_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph Isomorphism Restricted by Lists
Popis výsledku v původním jazyce
The complexity of graph isomorphism (GraphIso) is a famous problem in computer science. For graphs G and H, it asks whether they are the same up to a relabeling of vertices. In 1981, Lubiw proved that list restricted graph isomorphism (ListIso) is NP-complete: for each uelement V(G), we are given a list L(u) ? V(H) of possible images of u. After 35 years, we revive the study of this problem and consider which results for GraphIso can be modified to solve ListIso. We prove: 1) Under certain conditions, GI-completeness of a class of graphs implies NP-completeness of ListIso. 2) Several combinatorial algorithms for GraphIso can be modified to solve ListIso: for trees, planar graphs, interval graphs, circle graphs, permutation graphs, and bounded treewidth graphs. 3) ListIso is NP-complete for cubic colored graphs with sizes of color classes bounded by 8.
Název v anglickém jazyce
Graph Isomorphism Restricted by Lists
Popis výsledku anglicky
The complexity of graph isomorphism (GraphIso) is a famous problem in computer science. For graphs G and H, it asks whether they are the same up to a relabeling of vertices. In 1981, Lubiw proved that list restricted graph isomorphism (ListIso) is NP-complete: for each uelement V(G), we are given a list L(u) ? V(H) of possible images of u. After 35 years, we revive the study of this problem and consider which results for GraphIso can be modified to solve ListIso. We prove: 1) Under certain conditions, GI-completeness of a class of graphs implies NP-completeness of ListIso. 2) Several combinatorial algorithms for GraphIso can be modified to solve ListIso: for trees, planar graphs, interval graphs, circle graphs, permutation graphs, and bounded treewidth graphs. 3) ListIso is NP-complete for cubic colored graphs with sizes of color classes bounded by 8.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Graph-Theoretic Concepts in Computer Science - 46th International Workshop, WG 2020, Leeds, UK, June 24-26, 2020, Revised Selected Papers
ISBN
978-3-030-60439-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
106-118
Název nakladatele
Springer-Verlag
Místo vydání
Berlin
Místo konání akce
Leeds
Datum konání akce
24. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—