Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Graph isomorphism restricted by lists

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439058" target="_blank" >RIV/00216208:11320/21:10439058 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/21:00347829

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mdXjUsDDDo" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mdXjUsDDDo</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2021.01.027" target="_blank" >10.1016/j.tcs.2021.01.027</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Graph isomorphism restricted by lists

  • Popis výsledku v původním jazyce

    The complexity of graph isomorphism (GRAPHISO) is a famous problem in computer science. For graphs G and H, it asks whether they are the same up to a relabeling of vertices. In 1981, Lubiw proved that list restricted graph isomorphism (LISTISO) is NP-complete: for each u is an element of V(G), we are given a list L(u) subset of V(H) of possible images of u. After 35 years, we revive the study of this problem and consider which results for GraphIso can be modified to solve ListIso. We prove: 1) Under certain conditions, GI-completeness of a class of graphs implies NP-completeness of ListIso. 2) Several combinatorial algorithms for GraphIso can be modified to solve ListIso: for trees, planar graphs, interval graphs, circle graphs, permutation graphs, and bounded treewidth graphs. 3) ListIso is NP-complete for cubic colored graphs with sizes of color classes bounded by 8 with all lists of size at most 3. (C) 2021 The Author(s). Published by Elsevier B.V.

  • Název v anglickém jazyce

    Graph isomorphism restricted by lists

  • Popis výsledku anglicky

    The complexity of graph isomorphism (GRAPHISO) is a famous problem in computer science. For graphs G and H, it asks whether they are the same up to a relabeling of vertices. In 1981, Lubiw proved that list restricted graph isomorphism (LISTISO) is NP-complete: for each u is an element of V(G), we are given a list L(u) subset of V(H) of possible images of u. After 35 years, we revive the study of this problem and consider which results for GraphIso can be modified to solve ListIso. We prove: 1) Under certain conditions, GI-completeness of a class of graphs implies NP-completeness of ListIso. 2) Several combinatorial algorithms for GraphIso can be modified to solve ListIso: for trees, planar graphs, interval graphs, circle graphs, permutation graphs, and bounded treewidth graphs. 3) ListIso is NP-complete for cubic colored graphs with sizes of color classes bounded by 8 with all lists of size at most 3. (C) 2021 The Author(s). Published by Elsevier B.V.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

  • Svazek periodika

    860

  • Číslo periodika v rámci svazku

    March 2021

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    21

  • Strana od-do

    51-71

  • Kód UT WoS článku

    000620376400004

  • EID výsledku v databázi Scopus

    2-s2.0-85100699456