Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Existence of cube terms in finite algebras

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438457" target="_blank" >RIV/00216208:11320/21:10438457 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0H.d4Pj-Js" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0H.d4Pj-Js</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00012-020-00700-7" target="_blank" >10.1007/s00012-020-00700-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Existence of cube terms in finite algebras

  • Popis výsledku v původním jazyce

    We study the problem of whether a given finite algebra with finitely many basic operations contains a cube term; we give both structural and algorithmic results. We show that if such an algebra has a cube term then it has a cube term of dimension at most N, where the number N depends on the arities of basic operations of the algebra and the size of the basic set. For finite idempotent algebras we give a tight bound on N that, in the special case of algebras with more than ((vertical bar A vertical bar)(2)) basic operations, improves an earlier result of K. Kearnes and a. Szendrei. On the algorithmic side, we show that deciding the existence of cube terms is in P for idempotent algebras and in EXPTIME in general. Since an algebra contains a k-ary near unanimity operation if and only if it contains a k-dimensional cube term and generates a congruence distributive variety, our algorithm also lets us decide whether a given finite algebra has a near unanimity operation.

  • Název v anglickém jazyce

    Existence of cube terms in finite algebras

  • Popis výsledku anglicky

    We study the problem of whether a given finite algebra with finitely many basic operations contains a cube term; we give both structural and algorithmic results. We show that if such an algebra has a cube term then it has a cube term of dimension at most N, where the number N depends on the arities of basic operations of the algebra and the size of the basic set. For finite idempotent algebras we give a tight bound on N that, in the special case of algebras with more than ((vertical bar A vertical bar)(2)) basic operations, improves an earlier result of K. Kearnes and a. Szendrei. On the algorithmic side, we show that deciding the existence of cube terms is in P for idempotent algebras and in EXPTIME in general. Since an algebra contains a k-ary near unanimity operation if and only if it contains a k-dimensional cube term and generates a congruence distributive variety, our algorithm also lets us decide whether a given finite algebra has a near unanimity operation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Algebra Universalis

  • ISSN

    0002-5240

  • e-ISSN

  • Svazek periodika

    82

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    29

  • Strana od-do

    11

  • Kód UT WoS článku

    000610553000002

  • EID výsledku v databázi Scopus

    2-s2.0-85099356936