Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multiscale views of an Alfvenic slow solar wind: 3D velocity distribution functions observed by the Proton-Alpha Sensor of Solar Orbiter

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439898" target="_blank" >RIV/00216208:11320/21:10439898 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sUsI0Vph8-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sUsI0Vph8-</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202141095" target="_blank" >10.1051/0004-6361/202141095</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multiscale views of an Alfvenic slow solar wind: 3D velocity distribution functions observed by the Proton-Alpha Sensor of Solar Orbiter

  • Popis výsledku v původním jazyce

    Context. The Alfvenic slow solar wind is of particular interest, as it is often characterized by intense magnetic turbulence, complex proton 3D velocity distribution functions (VDF), and an ensuing richness of kinetic and dynamic processes. Aims. We take advantage of the fast time cadence of measurements taken by the Proton-Alpha Sensor (PAS) on board Solar Orbiter to analyze the kinetic properties of the proton population, the variability of their VDFs, and the possible link with propagating magnetic structures. We also study the magnetic (B) and velocity (V) correlation that characterizes this type of wind down to the ion gyroperiod. Methods. We analyzed the VDFs measured by PAS, a novelty that take advantages of the capability of 3D measurements at a 4 Hz cadence. In addition, we considered MAG observations. Results. We first show that there is a remarkable correlation between the B and V components observed down to timescales approaching the ion gyrofrequency. This concerns a wide variety of fluctuations, such as waves, isolated peaks, and discontinuities. The great variability of the proton VDFs is also documented. The juxtaposition of a core and a field-aligned beam is the norm but the relative density of the beam, drift speed, and temperatures can considerably change on scales as short as as a few seconds. The characteristics of the core are comparatively more stable. These variations in the beam characteristics mostly explain the variations in the total parallel temperature and, therefore, in the total anisotropy of the proton VDFs. Two magnetic structures that are associated with significant changes in the shape of VDFs, one corresponding to relaxation of total anisotropy and the other to its strong increase, are analyzed here. Our statistical analysis shows a clear link between total anisotropy (and, thus, beam characteristics) and the direction of B with respect to the Parker spiral. In the present case, flux tubes aligned with Parker spiral contain an average proton VDF with a much more developed beam (thus, with larger total anisotropy) than those that are inclined, perpendicular, or even reverse with regard to the outward direction. Conclusions. These observations document the variability of the proton VDF shape in relation to the propagation of magnetic structures. This is a key area of interest for understanding of the effect of turbulence on solar wind dynamics.

  • Název v anglickém jazyce

    Multiscale views of an Alfvenic slow solar wind: 3D velocity distribution functions observed by the Proton-Alpha Sensor of Solar Orbiter

  • Popis výsledku anglicky

    Context. The Alfvenic slow solar wind is of particular interest, as it is often characterized by intense magnetic turbulence, complex proton 3D velocity distribution functions (VDF), and an ensuing richness of kinetic and dynamic processes. Aims. We take advantage of the fast time cadence of measurements taken by the Proton-Alpha Sensor (PAS) on board Solar Orbiter to analyze the kinetic properties of the proton population, the variability of their VDFs, and the possible link with propagating magnetic structures. We also study the magnetic (B) and velocity (V) correlation that characterizes this type of wind down to the ion gyroperiod. Methods. We analyzed the VDFs measured by PAS, a novelty that take advantages of the capability of 3D measurements at a 4 Hz cadence. In addition, we considered MAG observations. Results. We first show that there is a remarkable correlation between the B and V components observed down to timescales approaching the ion gyrofrequency. This concerns a wide variety of fluctuations, such as waves, isolated peaks, and discontinuities. The great variability of the proton VDFs is also documented. The juxtaposition of a core and a field-aligned beam is the norm but the relative density of the beam, drift speed, and temperatures can considerably change on scales as short as as a few seconds. The characteristics of the core are comparatively more stable. These variations in the beam characteristics mostly explain the variations in the total parallel temperature and, therefore, in the total anisotropy of the proton VDFs. Two magnetic structures that are associated with significant changes in the shape of VDFs, one corresponding to relaxation of total anisotropy and the other to its strong increase, are analyzed here. Our statistical analysis shows a clear link between total anisotropy (and, thus, beam characteristics) and the direction of B with respect to the Parker spiral. In the present case, flux tubes aligned with Parker spiral contain an average proton VDF with a much more developed beam (thus, with larger total anisotropy) than those that are inclined, perpendicular, or even reverse with regard to the outward direction. Conclusions. These observations document the variability of the proton VDF shape in relation to the propagation of magnetic structures. This is a key area of interest for understanding of the effect of turbulence on solar wind dynamics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-18993S" target="_blank" >GA19-18993S: Přenos energie variací slunečního větru z velkých do malých škál</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Astronomy &amp; Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

  • Svazek periodika

    656

  • Číslo periodika v rámci svazku

    Dec

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    10

  • Strana od-do

    A36

  • Kód UT WoS článku

    000730246400047

  • EID výsledku v databázi Scopus

    2-s2.0-85121586724