Revisiting the Chemical Stability of Germanium Selenide (GeSe) and the Origin of its Photocatalytic Efficiency
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440150" target="_blank" >RIV/00216208:11320/21:10440150 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jm2U1mro0t" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jm2U1mro0t</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202106228" target="_blank" >10.1002/adfm.202106228</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Revisiting the Chemical Stability of Germanium Selenide (GeSe) and the Origin of its Photocatalytic Efficiency
Popis výsledku v původním jazyce
Recently, germanium selenide (GeSe) has emerged as a promising van der Waals semiconductor for photovoltaics, solar light harvesting, and water photoelectrolysis cells. Contrary to previous reports claiming perfect ambient stability based on experiments with techniques without surface sensitivity, here, by means of surface-science investigations and density functional theory, it is demonstrated that actually both: i) the surface of bulk crystals; and ii) atomically thin flakes of GeSe are prone to oxidation, with the formation of self-assembled germanium-oxide skin with sub-nanometric thickness. Surface oxidation leads to the decrease of the bandgap of stoichiometric GeSe and GeSe1-x, while bandgap energy increases upon surface oxidation of Ge1-xSe. Remarkably, the formation of a surface oxide skin on GeSe crystals plays a key role in the physicochemical mechanisms ruling photoelectrocatalysis: the underlying van der Waals semiconductor provides electron-hole pairs, while the germanium-oxide skin formed upon oxidation affords the active sites for catalytic reactions. The self-assembled germanium-oxide/germanium-selenide heterostructure with different bandgaps enables the activation of photocatalytic processes by absorption of light of different wavelengths, with inherently superior activity. Finally, it is discovered that, depending on the specific solvent-GeSe interaction, the liquid phase exfoliation of bulk crystals can induce the formation of Se nanowires.
Název v anglickém jazyce
Revisiting the Chemical Stability of Germanium Selenide (GeSe) and the Origin of its Photocatalytic Efficiency
Popis výsledku anglicky
Recently, germanium selenide (GeSe) has emerged as a promising van der Waals semiconductor for photovoltaics, solar light harvesting, and water photoelectrolysis cells. Contrary to previous reports claiming perfect ambient stability based on experiments with techniques without surface sensitivity, here, by means of surface-science investigations and density functional theory, it is demonstrated that actually both: i) the surface of bulk crystals; and ii) atomically thin flakes of GeSe are prone to oxidation, with the formation of self-assembled germanium-oxide skin with sub-nanometric thickness. Surface oxidation leads to the decrease of the bandgap of stoichiometric GeSe and GeSe1-x, while bandgap energy increases upon surface oxidation of Ge1-xSe. Remarkably, the formation of a surface oxide skin on GeSe crystals plays a key role in the physicochemical mechanisms ruling photoelectrocatalysis: the underlying van der Waals semiconductor provides electron-hole pairs, while the germanium-oxide skin formed upon oxidation affords the active sites for catalytic reactions. The self-assembled germanium-oxide/germanium-selenide heterostructure with different bandgaps enables the activation of photocatalytic processes by absorption of light of different wavelengths, with inherently superior activity. Finally, it is discovered that, depending on the specific solvent-GeSe interaction, the liquid phase exfoliation of bulk crystals can induce the formation of Se nanowires.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018116" target="_blank" >LM2018116: Laboratoř fyziky povrchů - Optická dráha pro výzkum materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
50
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
2106228
Kód UT WoS článku
000696479300001
EID výsledku v databázi Scopus
2-s2.0-85114918221